Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: Lambent/cosmoem-8x1B
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: vicgalle/alpaca-gpt4
    type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./cosmoe-lora-out

unfrozen_parameters:

model_config:
  output_router_logits: true

adapter: lora
lora_model_dir:
lora_r: 64
lora_alpha: 16
lora_dropout: 0.1
lora_target_linear: true
lora_fan_in_fan_out:

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

lora_r: 64
lora_alpha: 16
lora_dropout: 0.1
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: CosMoEAlpacaLight-1b-v0.1
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

cosmoe-lora-out

This model is a fine-tuned version of Lambent/cosmoem-8x1B on the vicgalle/alpaca-gpt4 dataset.

Model description

Model broke somewhat in training.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Framework versions

  • PEFT 0.8.2
  • Transformers 4.39.0.dev0
  • Pytorch 2.1.1+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.0
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Lambent/CosMoEAlpacaLight-8x1b

Adapter
(1)
this model

Dataset used to train Lambent/CosMoEAlpacaLight-8x1b