See axolotl config
axolotl version: 0.4.0
base_model: HuggingFaceTB/cosmo-1b
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: neural-bridge/rag-dataset-12000
type: context_qa.load_v2
- path: neural-bridge/rag-hallucination-dataset-1000
type: context_qa.load_v2
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./rag-lora-out
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 32
lora_dropout: 0.1
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: Cosmo-1b-RAG-v0.1
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 8
eval_batch_size: 8
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
rag-lora-out
This model is a fine-tuned version of HuggingFaceTB/cosmo-1b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6086
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5873 | 1.02 | 148 | 0.6392 |
0.4513 | 2.02 | 296 | 0.6006 |
0.422 | 2.95 | 435 | 0.6086 |
Framework versions
- PEFT 0.9.1.dev0
- Transformers 4.39.0.dev0
- Pytorch 2.1.1+cu121
- Datasets 2.17.1
- Tokenizers 0.15.0
- Downloads last month
- 0