Lasion's picture
End of training
6c2d6f2 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - timit_asr
metrics:
  - wer
model-index:
  - name: wav2vec2-base-timit-demo-google-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: timit_asr
          type: timit_asr
          config: clean
          split: test
          args: clean
        metrics:
          - name: Wer
            type: wer
            value: 0.3367100820067535

wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the timit_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4634
  • Wer: 0.3367

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.6019 1.0 500 2.4586 1.0
0.9594 2.01 1000 0.5023 0.5122
0.4324 3.01 1500 0.4808 0.4703
0.2991 4.02 2000 0.4098 0.4208
0.2257 5.02 2500 0.4883 0.4264
0.18 6.02 3000 0.4441 0.3914
0.1524 7.03 3500 0.4360 0.3869
0.1315 8.03 4000 0.4448 0.3783
0.1101 9.04 4500 0.4570 0.3704
0.1017 10.04 5000 0.4252 0.3680
0.0863 11.04 5500 0.4492 0.3606
0.0798 12.05 6000 0.4241 0.3604
0.0688 13.05 6500 0.4585 0.3535
0.0608 14.06 7000 0.4491 0.3488
0.0524 15.06 7500 0.4550 0.3456
0.0502 16.06 8000 0.4570 0.3453
0.0458 17.07 8500 0.4680 0.3421
0.0395 18.07 9000 0.4663 0.3390
0.0352 19.08 9500 0.4634 0.3367

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 1.18.3
  • Tokenizers 0.15.2