Lasion's picture
Upload tokenizer
10f6e8c verified
|
raw
history blame
4.13 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
base_model: facebook/wav2vec2-xls-r-300m
metrics:
  - wer
model-index:
  - name: wav2vec2-base-vivos
    results: []

wav2vec2-base-vivos

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5366
  • Wer: 0.3320

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
7.987 0.66 500 3.5460 1.0
3.4026 1.31 1000 3.0685 1.0
1.6402 1.97 1500 0.7959 0.7082
0.8229 2.62 2000 0.5581 0.5326
0.6392 3.28 2500 0.4779 0.4738
0.5532 3.94 3000 0.4415 0.4491
0.4937 4.59 3500 0.4318 0.4312
0.4506 5.25 4000 0.4284 0.4134
0.4099 5.91 4500 0.4405 0.4267
0.3848 6.56 5000 0.4097 0.3987
0.3683 7.22 5500 0.4239 0.4031
0.3485 7.87 6000 0.4383 0.3926
0.3313 8.53 6500 0.4779 0.3846
0.321 9.19 7000 0.4623 0.3895
0.3058 9.84 7500 0.4668 0.3906
0.2869 10.5 8000 0.4817 0.3749
0.2828 11.15 8500 0.4777 0.3789
0.2724 11.81 9000 0.4915 0.3649
0.2527 12.47 9500 0.4671 0.3670
0.2588 13.12 10000 0.4693 0.3612
0.2405 13.78 10500 0.4375 0.3579
0.2409 14.44 11000 0.4643 0.3595
0.2247 15.09 11500 0.5445 0.3626
0.2257 15.75 12000 0.4474 0.3513
0.2101 16.4 12500 0.4327 0.3502
0.2118 17.06 13000 0.4830 0.3534
0.1991 17.72 13500 0.4832 0.3454
0.193 18.37 14000 0.4878 0.3547
0.1909 19.03 14500 0.4777 0.3506
0.1869 19.69 15000 0.4722 0.3455
0.1801 20.34 15500 0.4891 0.3477
0.1749 21.0 16000 0.5065 0.3446
0.1715 21.65 16500 0.5381 0.3447
0.1669 22.31 17000 0.4946 0.3459
0.1674 22.97 17500 0.4968 0.3425
0.1579 23.62 18000 0.5210 0.3370
0.1566 24.28 18500 0.5318 0.3385
0.1565 24.93 19000 0.4959 0.3381
0.1517 25.59 19500 0.5181 0.3393
0.1452 26.25 20000 0.5222 0.3359
0.1419 26.9 20500 0.5316 0.3333
0.1389 27.56 21000 0.5094 0.3302
0.1422 28.22 21500 0.5327 0.3346
0.1365 28.87 22000 0.5436 0.3320
0.1337 29.53 22500 0.5366 0.3320

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2