Edit model card

PPO Agent playing LunarLander-v2

This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.

Usage (with Stable-baselines3)

Follow to eval the agent locally:

repo_id = "Laz4rz/hf-LunarLander-1-ppo" # The repo_id
filename = "ppo-LunarLander-v2.zip" # The model filename.zip

checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint)

eval_env = Monitor(gym.make("LunarLander-v2"))
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")

...
Downloads last month
0
Video Preview
loading

Evaluation results