w11wo's picture
Update README.md
dd0532c verified
|
raw
history blame
3.51 kB
metadata
license: apache-2.0
base_model: LazarusNLP/IndoNanoT5-base
tags:
  - generated_from_trainer
language:
  - ind
datasets:
  - GEM/indonlg
metrics:
  - rouge
model-index:
  - name: IndoNanoT5-base-Liputan6-Canonical
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: indonlg
          type: indonlg
          config: liputan6_canonical
          split: validation
          args: liputan6_canonical
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.3976
          - name: Rouge2
            type: rouge
            value: 0.2229
          - name: RougeL
            type: rouge
            value: 0.3346
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: indonlg
          type: indonlg
          config: liputan6_extreme
          split: validation
          args: liputan6_extreme
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.3323
          - name: Rouge2
            type: rouge
            value: 0.1417
          - name: RougeL
            type: rouge
            value: 0.2621

LazarusNLP/IndoNanoT5-base-Liputan6-Canonical

This model is a fine-tuned version of LazarusNLP/IndoNanoT5-base on the indonlg dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1194
  • Rouge1: 0.3976
  • Rouge2: 0.2229
  • Rougel: 0.3346
  • Rougelsum: 0.3345
  • Gen Len: 43.3808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.9693 1.0 24236 1.3245 0.3082 0.1585 0.2687 0.2688 18.9956
0.9338 2.0 48472 1.2759 0.3105 0.159 0.2705 0.2706 18.9985
0.8632 3.0 72708 1.2698 0.3094 0.1586 0.2701 0.2702 18.9995
0.8257 4.0 96944 1.2631 0.312 0.1603 0.2716 0.2715 18.9993
0.7789 5.0 121180 1.2642 0.3149 0.1625 0.2748 0.2747 18.9998
0.7595 6.0 145416 1.2587 0.3202 0.1658 0.279 0.2791 18.9995
0.7343 7.0 169652 1.2644 0.3183 0.1647 0.2773 0.2773 18.9996
0.7165 8.0 193888 1.2635 0.3141 0.1605 0.2732 0.2732 18.9993
0.6697 9.0 218124 1.2856 0.316 0.162 0.275 0.275 18.9998
0.6729 10.0 242360 1.2809 0.3195 0.164 0.2775 0.2776 18.9992
0.6471 11.0 266596 1.2833 0.3185 0.1636 0.2769 0.277 18.9982

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.1