|
--- |
|
license: mit |
|
base_model: indobenchmark/indobert-lite-base-p1 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: indobert-lite-base-p1-indonli-multilingual-nli-distil-mdeberta |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# indobert-lite-base-p1-indonli-multilingual-nli-distil-mdeberta |
|
|
|
This model is a fine-tuned version of [indobenchmark/indobert-lite-base-p1](https://huggingface.co/indobenchmark/indobert-lite-base-p1) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5005 |
|
- Accuracy: 0.6545 |
|
- F1: 0.6524 |
|
- Precision: 0.6615 |
|
- Recall: 0.6577 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.4808 | 1.0 | 1803 | 0.4418 | 0.7683 | 0.7593 | 0.7904 | 0.7554 | |
|
| 0.4529 | 2.0 | 3606 | 0.4343 | 0.7738 | 0.7648 | 0.7893 | 0.7619 | |
|
| 0.4263 | 3.0 | 5409 | 0.4383 | 0.7861 | 0.7828 | 0.7874 | 0.7807 | |
|
| 0.398 | 4.0 | 7212 | 0.4456 | 0.7792 | 0.7767 | 0.7792 | 0.7756 | |
|
| 0.3772 | 5.0 | 9015 | 0.4499 | 0.7711 | 0.7674 | 0.7700 | 0.7661 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|