File size: 1,878 Bytes
be84008 aad44c5 be84008 6eea254 be84008 aad44c5 be84008 aad44c5 be84008 aad44c5 be84008 6eea254 be84008 6eea254 be84008 d301f82 aad44c5 d301f82 aad44c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: KoELECTRA-small-v3-modu-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# KoELECTRA-small-v3-modu-ner
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1443
- Precision: 0.8176
- Recall: 0.8401
- F1: 0.8287
- Accuracy: 0.9615
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 3787
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 3788 | 0.1511 | 0.8095 | 0.8257 | 0.8176 | 0.9594 |
| No log | 2.0 | 7576 | 0.1461 | 0.8121 | 0.8339 | 0.8228 | 0.9600 |
| No log | 3.0 | 11364 | 0.1417 | 0.8139 | 0.8372 | 0.8254 | 0.9607 |
| No log | 4.0 | 15152 | 0.1418 | 0.8238 | 0.8346 | 0.8292 | 0.9617 |
| 0.0748 | 5.0 | 18940 | 0.1443 | 0.8176 | 0.8401 | 0.8287 | 0.9615 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.2
|