Add new SentenceTransformer model.
Browse files- README.md +96 -95
- model.safetensors +1 -1
README.md
CHANGED
@@ -46,7 +46,7 @@ tags:
|
|
46 |
- feature-extraction
|
47 |
- generated_from_trainer
|
48 |
- dataset_size:560
|
49 |
-
- loss:
|
50 |
widget:
|
51 |
- source_sentence: Let's search inside
|
52 |
sentences:
|
@@ -84,109 +84,109 @@ model-index:
|
|
84 |
type: custom-arc-semantics-data
|
85 |
metrics:
|
86 |
- type: cosine_accuracy
|
87 |
-
value: 0.
|
88 |
name: Cosine Accuracy
|
89 |
- type: cosine_accuracy_threshold
|
90 |
-
value: 0.
|
91 |
name: Cosine Accuracy Threshold
|
92 |
- type: cosine_f1
|
93 |
-
value: 0.
|
94 |
name: Cosine F1
|
95 |
- type: cosine_f1_threshold
|
96 |
-
value: 0.
|
97 |
name: Cosine F1 Threshold
|
98 |
- type: cosine_precision
|
99 |
-
value: 0.
|
100 |
name: Cosine Precision
|
101 |
- type: cosine_recall
|
102 |
-
value: 0.
|
103 |
name: Cosine Recall
|
104 |
- type: cosine_ap
|
105 |
-
value: 0.
|
106 |
name: Cosine Ap
|
107 |
- type: dot_accuracy
|
108 |
-
value: 0.
|
109 |
name: Dot Accuracy
|
110 |
- type: dot_accuracy_threshold
|
111 |
-
value: 0.
|
112 |
name: Dot Accuracy Threshold
|
113 |
- type: dot_f1
|
114 |
-
value: 0.
|
115 |
name: Dot F1
|
116 |
- type: dot_f1_threshold
|
117 |
-
value: 0.
|
118 |
name: Dot F1 Threshold
|
119 |
- type: dot_precision
|
120 |
-
value: 0.
|
121 |
name: Dot Precision
|
122 |
- type: dot_recall
|
123 |
-
value: 0.
|
124 |
name: Dot Recall
|
125 |
- type: dot_ap
|
126 |
-
value: 0.
|
127 |
name: Dot Ap
|
128 |
- type: manhattan_accuracy
|
129 |
-
value: 0.
|
130 |
name: Manhattan Accuracy
|
131 |
- type: manhattan_accuracy_threshold
|
132 |
-
value:
|
133 |
name: Manhattan Accuracy Threshold
|
134 |
- type: manhattan_f1
|
135 |
-
value: 0.
|
136 |
name: Manhattan F1
|
137 |
- type: manhattan_f1_threshold
|
138 |
-
value:
|
139 |
name: Manhattan F1 Threshold
|
140 |
- type: manhattan_precision
|
141 |
-
value: 0.
|
142 |
name: Manhattan Precision
|
143 |
- type: manhattan_recall
|
144 |
-
value: 0.
|
145 |
name: Manhattan Recall
|
146 |
- type: manhattan_ap
|
147 |
-
value: 0.
|
148 |
name: Manhattan Ap
|
149 |
- type: euclidean_accuracy
|
150 |
-
value: 0.
|
151 |
name: Euclidean Accuracy
|
152 |
- type: euclidean_accuracy_threshold
|
153 |
-
value: 1.
|
154 |
name: Euclidean Accuracy Threshold
|
155 |
- type: euclidean_f1
|
156 |
-
value: 0.
|
157 |
name: Euclidean F1
|
158 |
- type: euclidean_f1_threshold
|
159 |
-
value: 1.
|
160 |
name: Euclidean F1 Threshold
|
161 |
- type: euclidean_precision
|
162 |
-
value: 0.
|
163 |
name: Euclidean Precision
|
164 |
- type: euclidean_recall
|
165 |
-
value: 0.
|
166 |
name: Euclidean Recall
|
167 |
- type: euclidean_ap
|
168 |
-
value: 0.
|
169 |
name: Euclidean Ap
|
170 |
- type: max_accuracy
|
171 |
-
value: 0.
|
172 |
name: Max Accuracy
|
173 |
- type: max_accuracy_threshold
|
174 |
-
value:
|
175 |
name: Max Accuracy Threshold
|
176 |
- type: max_f1
|
177 |
-
value: 0.
|
178 |
name: Max F1
|
179 |
- type: max_f1_threshold
|
180 |
-
value:
|
181 |
name: Max F1 Threshold
|
182 |
- type: max_precision
|
183 |
-
value: 0.
|
184 |
name: Max Precision
|
185 |
- type: max_recall
|
186 |
-
value: 0.
|
187 |
name: Max Recall
|
188 |
- type: max_ap
|
189 |
-
value: 0.
|
190 |
name: Max Ap
|
191 |
---
|
192 |
|
@@ -288,41 +288,41 @@ You can finetune this model on your own dataset.
|
|
288 |
|
289 |
| Metric | Value |
|
290 |
|:-----------------------------|:-----------|
|
291 |
-
| cosine_accuracy | 0.
|
292 |
-
| cosine_accuracy_threshold | 0.
|
293 |
-
| cosine_f1 | 0.
|
294 |
-
| cosine_f1_threshold | 0.
|
295 |
-
| cosine_precision | 0.
|
296 |
-
| cosine_recall | 0.
|
297 |
-
| cosine_ap | 0.
|
298 |
-
| dot_accuracy | 0.
|
299 |
-
| dot_accuracy_threshold | 0.
|
300 |
-
| dot_f1 | 0.
|
301 |
-
| dot_f1_threshold | 0.
|
302 |
-
| dot_precision | 0.
|
303 |
-
| dot_recall | 0.
|
304 |
-
| dot_ap | 0.
|
305 |
-
| manhattan_accuracy | 0.
|
306 |
-
| manhattan_accuracy_threshold |
|
307 |
-
| manhattan_f1 | 0.
|
308 |
-
| manhattan_f1_threshold |
|
309 |
-
| manhattan_precision | 0.
|
310 |
-
| manhattan_recall | 0.
|
311 |
-
| manhattan_ap | 0.
|
312 |
-
| euclidean_accuracy | 0.
|
313 |
-
| euclidean_accuracy_threshold | 1.
|
314 |
-
| euclidean_f1 | 0.
|
315 |
-
| euclidean_f1_threshold | 1.
|
316 |
-
| euclidean_precision | 0.
|
317 |
-
| euclidean_recall | 0.
|
318 |
-
| euclidean_ap | 0.
|
319 |
-
| max_accuracy | 0.
|
320 |
-
| max_accuracy_threshold |
|
321 |
-
| max_f1 | 0.
|
322 |
-
| max_f1_threshold |
|
323 |
-
| max_precision | 0.
|
324 |
-
| max_recall | 0.
|
325 |
-
| **max_ap** | **0.
|
326 |
|
327 |
<!--
|
328 |
## Bias, Risks and Limitations
|
@@ -356,11 +356,11 @@ You can finetune this model on your own dataset.
|
|
356 |
| <code>When it was dinner</code> | <code>Dinner time</code> | <code>1</code> |
|
357 |
| <code>Did you cook chicken noodle last night?</code> | <code>Did you make chicken noodle for dinner?</code> | <code>1</code> |
|
358 |
| <code>Someone who can change item</code> | <code>Someone who uses magic that turns something into something. </code> | <code>1</code> |
|
359 |
-
* Loss: [<code>
|
360 |
```json
|
361 |
{
|
362 |
"scale": 20.0,
|
363 |
-
"similarity_fct": "
|
364 |
}
|
365 |
```
|
366 |
|
@@ -382,11 +382,11 @@ You can finetune this model on your own dataset.
|
|
382 |
| <code>Let's check inside</code> | <code>Let's search inside</code> | <code>1</code> |
|
383 |
| <code>Sohpie, are you okay?</code> | <code>Sophie Are you pressured?</code> | <code>0</code> |
|
384 |
| <code>This wine glass is related.</code> | <code>This sword looks important.</code> | <code>0</code> |
|
385 |
-
* Loss: [<code>
|
386 |
```json
|
387 |
{
|
388 |
"scale": 20.0,
|
389 |
-
"similarity_fct": "
|
390 |
}
|
391 |
```
|
392 |
|
@@ -521,19 +521,19 @@ You can finetune this model on your own dataset.
|
|
521 |
| Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap |
|
522 |
|:-----:|:----:|:-------------:|:------:|:--------------------------------:|
|
523 |
| None | 0 | - | - | 0.9254 |
|
524 |
-
| 1.0 | 70 |
|
525 |
-
| 2.0 | 140 |
|
526 |
-
| 3.0 | 210 | 0.
|
527 |
-
| 4.0 | 280 | 0.
|
528 |
-
| 5.0 | 350 | 0.
|
529 |
-
| 6.0 | 420 | 0.
|
530 |
-
| 7.0 | 490 | 0.
|
531 |
-
| 8.0 | 560 | 0.
|
532 |
-
| 9.0 | 630 | 0.
|
533 |
-
| 10.0 | 700 | 0.
|
534 |
-
| 11.0 | 770 | 0.
|
535 |
-
| 12.0 | 840 | 0.
|
536 |
-
| 13.0 | 910 | 0.
|
537 |
|
538 |
|
539 |
### Framework Versions
|
@@ -562,14 +562,15 @@ You can finetune this model on your own dataset.
|
|
562 |
}
|
563 |
```
|
564 |
|
565 |
-
####
|
566 |
```bibtex
|
567 |
-
@
|
568 |
-
title={
|
569 |
-
author={
|
570 |
-
year={
|
571 |
-
|
572 |
-
|
|
|
573 |
}
|
574 |
```
|
575 |
|
|
|
46 |
- feature-extraction
|
47 |
- generated_from_trainer
|
48 |
- dataset_size:560
|
49 |
+
- loss:MultipleNegativesRankingLoss
|
50 |
widget:
|
51 |
- source_sentence: Let's search inside
|
52 |
sentences:
|
|
|
84 |
type: custom-arc-semantics-data
|
85 |
metrics:
|
86 |
- type: cosine_accuracy
|
87 |
+
value: 0.85
|
88 |
name: Cosine Accuracy
|
89 |
- type: cosine_accuracy_threshold
|
90 |
+
value: 0.49632835388183594
|
91 |
name: Cosine Accuracy Threshold
|
92 |
- type: cosine_f1
|
93 |
+
value: 0.8727272727272727
|
94 |
name: Cosine F1
|
95 |
- type: cosine_f1_threshold
|
96 |
+
value: 0.48691314458847046
|
97 |
name: Cosine F1 Threshold
|
98 |
- type: cosine_precision
|
99 |
+
value: 0.8888888888888888
|
100 |
name: Cosine Precision
|
101 |
- type: cosine_recall
|
102 |
+
value: 0.8571428571428571
|
103 |
name: Cosine Recall
|
104 |
- type: cosine_ap
|
105 |
+
value: 0.927175101411552
|
106 |
name: Cosine Ap
|
107 |
- type: dot_accuracy
|
108 |
+
value: 0.85
|
109 |
name: Dot Accuracy
|
110 |
- type: dot_accuracy_threshold
|
111 |
+
value: 0.4963283836841583
|
112 |
name: Dot Accuracy Threshold
|
113 |
- type: dot_f1
|
114 |
+
value: 0.8727272727272727
|
115 |
name: Dot F1
|
116 |
- type: dot_f1_threshold
|
117 |
+
value: 0.48691320419311523
|
118 |
name: Dot F1 Threshold
|
119 |
- type: dot_precision
|
120 |
+
value: 0.8888888888888888
|
121 |
name: Dot Precision
|
122 |
- type: dot_recall
|
123 |
+
value: 0.8571428571428571
|
124 |
name: Dot Recall
|
125 |
- type: dot_ap
|
126 |
+
value: 0.927175101411552
|
127 |
name: Dot Ap
|
128 |
- type: manhattan_accuracy
|
129 |
+
value: 0.8428571428571429
|
130 |
name: Manhattan Accuracy
|
131 |
- type: manhattan_accuracy_threshold
|
132 |
+
value: 15.624195098876953
|
133 |
name: Manhattan Accuracy Threshold
|
134 |
- type: manhattan_f1
|
135 |
+
value: 0.8681318681318683
|
136 |
name: Manhattan F1
|
137 |
- type: manhattan_f1_threshold
|
138 |
+
value: 18.23479461669922
|
139 |
name: Manhattan F1 Threshold
|
140 |
- type: manhattan_precision
|
141 |
+
value: 0.8061224489795918
|
142 |
name: Manhattan Precision
|
143 |
- type: manhattan_recall
|
144 |
+
value: 0.9404761904761905
|
145 |
name: Manhattan Recall
|
146 |
- type: manhattan_ap
|
147 |
+
value: 0.9264219833665228
|
148 |
name: Manhattan Ap
|
149 |
- type: euclidean_accuracy
|
150 |
+
value: 0.85
|
151 |
name: Euclidean Accuracy
|
152 |
- type: euclidean_accuracy_threshold
|
153 |
+
value: 1.00364351272583
|
154 |
name: Euclidean Accuracy Threshold
|
155 |
- type: euclidean_f1
|
156 |
+
value: 0.8727272727272727
|
157 |
name: Euclidean F1
|
158 |
- type: euclidean_f1_threshold
|
159 |
+
value: 1.0129987001419067
|
160 |
name: Euclidean F1 Threshold
|
161 |
- type: euclidean_precision
|
162 |
+
value: 0.8888888888888888
|
163 |
name: Euclidean Precision
|
164 |
- type: euclidean_recall
|
165 |
+
value: 0.8571428571428571
|
166 |
name: Euclidean Recall
|
167 |
- type: euclidean_ap
|
168 |
+
value: 0.927175101411552
|
169 |
name: Euclidean Ap
|
170 |
- type: max_accuracy
|
171 |
+
value: 0.85
|
172 |
name: Max Accuracy
|
173 |
- type: max_accuracy_threshold
|
174 |
+
value: 15.624195098876953
|
175 |
name: Max Accuracy Threshold
|
176 |
- type: max_f1
|
177 |
+
value: 0.8727272727272727
|
178 |
name: Max F1
|
179 |
- type: max_f1_threshold
|
180 |
+
value: 18.23479461669922
|
181 |
name: Max F1 Threshold
|
182 |
- type: max_precision
|
183 |
+
value: 0.8888888888888888
|
184 |
name: Max Precision
|
185 |
- type: max_recall
|
186 |
+
value: 0.9404761904761905
|
187 |
name: Max Recall
|
188 |
- type: max_ap
|
189 |
+
value: 0.927175101411552
|
190 |
name: Max Ap
|
191 |
---
|
192 |
|
|
|
288 |
|
289 |
| Metric | Value |
|
290 |
|:-----------------------------|:-----------|
|
291 |
+
| cosine_accuracy | 0.85 |
|
292 |
+
| cosine_accuracy_threshold | 0.4963 |
|
293 |
+
| cosine_f1 | 0.8727 |
|
294 |
+
| cosine_f1_threshold | 0.4869 |
|
295 |
+
| cosine_precision | 0.8889 |
|
296 |
+
| cosine_recall | 0.8571 |
|
297 |
+
| cosine_ap | 0.9272 |
|
298 |
+
| dot_accuracy | 0.85 |
|
299 |
+
| dot_accuracy_threshold | 0.4963 |
|
300 |
+
| dot_f1 | 0.8727 |
|
301 |
+
| dot_f1_threshold | 0.4869 |
|
302 |
+
| dot_precision | 0.8889 |
|
303 |
+
| dot_recall | 0.8571 |
|
304 |
+
| dot_ap | 0.9272 |
|
305 |
+
| manhattan_accuracy | 0.8429 |
|
306 |
+
| manhattan_accuracy_threshold | 15.6242 |
|
307 |
+
| manhattan_f1 | 0.8681 |
|
308 |
+
| manhattan_f1_threshold | 18.2348 |
|
309 |
+
| manhattan_precision | 0.8061 |
|
310 |
+
| manhattan_recall | 0.9405 |
|
311 |
+
| manhattan_ap | 0.9264 |
|
312 |
+
| euclidean_accuracy | 0.85 |
|
313 |
+
| euclidean_accuracy_threshold | 1.0036 |
|
314 |
+
| euclidean_f1 | 0.8727 |
|
315 |
+
| euclidean_f1_threshold | 1.013 |
|
316 |
+
| euclidean_precision | 0.8889 |
|
317 |
+
| euclidean_recall | 0.8571 |
|
318 |
+
| euclidean_ap | 0.9272 |
|
319 |
+
| max_accuracy | 0.85 |
|
320 |
+
| max_accuracy_threshold | 15.6242 |
|
321 |
+
| max_f1 | 0.8727 |
|
322 |
+
| max_f1_threshold | 18.2348 |
|
323 |
+
| max_precision | 0.8889 |
|
324 |
+
| max_recall | 0.9405 |
|
325 |
+
| **max_ap** | **0.9272** |
|
326 |
|
327 |
<!--
|
328 |
## Bias, Risks and Limitations
|
|
|
356 |
| <code>When it was dinner</code> | <code>Dinner time</code> | <code>1</code> |
|
357 |
| <code>Did you cook chicken noodle last night?</code> | <code>Did you make chicken noodle for dinner?</code> | <code>1</code> |
|
358 |
| <code>Someone who can change item</code> | <code>Someone who uses magic that turns something into something. </code> | <code>1</code> |
|
359 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
360 |
```json
|
361 |
{
|
362 |
"scale": 20.0,
|
363 |
+
"similarity_fct": "cos_sim"
|
364 |
}
|
365 |
```
|
366 |
|
|
|
382 |
| <code>Let's check inside</code> | <code>Let's search inside</code> | <code>1</code> |
|
383 |
| <code>Sohpie, are you okay?</code> | <code>Sophie Are you pressured?</code> | <code>0</code> |
|
384 |
| <code>This wine glass is related.</code> | <code>This sword looks important.</code> | <code>0</code> |
|
385 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
386 |
```json
|
387 |
{
|
388 |
"scale": 20.0,
|
389 |
+
"similarity_fct": "cos_sim"
|
390 |
}
|
391 |
```
|
392 |
|
|
|
521 |
| Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap |
|
522 |
|:-----:|:----:|:-------------:|:------:|:--------------------------------:|
|
523 |
| None | 0 | - | - | 0.9254 |
|
524 |
+
| 1.0 | 70 | 1.1722 | 1.2175 | 0.9237 |
|
525 |
+
| 2.0 | 140 | 0.7774 | 1.0454 | 0.9291 |
|
526 |
+
| 3.0 | 210 | 0.4122 | 1.0024 | 0.9316 |
|
527 |
+
| 4.0 | 280 | 0.229 | 0.9819 | 0.9285 |
|
528 |
+
| 5.0 | 350 | 0.1509 | 0.9215 | 0.9321 |
|
529 |
+
| 6.0 | 420 | 0.0988 | 0.9119 | 0.9312 |
|
530 |
+
| 7.0 | 490 | 0.0772 | 0.8962 | 0.9303 |
|
531 |
+
| 8.0 | 560 | 0.0564 | 0.8905 | 0.9272 |
|
532 |
+
| 9.0 | 630 | 0.0449 | 0.8878 | 0.9266 |
|
533 |
+
| 10.0 | 700 | 0.037 | 0.8841 | 0.9273 |
|
534 |
+
| 11.0 | 770 | 0.0387 | 0.8881 | 0.9265 |
|
535 |
+
| 12.0 | 840 | 0.0332 | 0.8884 | 0.9274 |
|
536 |
+
| 13.0 | 910 | 0.032 | 0.8890 | 0.9272 |
|
537 |
|
538 |
|
539 |
### Framework Versions
|
|
|
562 |
}
|
563 |
```
|
564 |
|
565 |
+
#### MultipleNegativesRankingLoss
|
566 |
```bibtex
|
567 |
+
@misc{henderson2017efficient,
|
568 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
569 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
570 |
+
year={2017},
|
571 |
+
eprint={1705.00652},
|
572 |
+
archivePrefix={arXiv},
|
573 |
+
primaryClass={cs.CL}
|
574 |
}
|
575 |
```
|
576 |
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 90864192
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f724ea45fc6e76f2fe28ae0d75a450d3e7365c6fb93d8edd41724b13cde80da5
|
3 |
size 90864192
|