sbert-base-ja-arc / README.md
LeoChiuu's picture
Add new SentenceTransformer model.
23e9052 verified
|
raw
history blame
19.7 kB
metadata
base_model: colorfulscoop/sbert-base-ja
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:680
  - loss:ContrastiveLoss
widget:
  - source_sentence: 両方はだめ?
    sentences:
      - 両方欲しい
      - あほ
      - キッチンを調べよう
  - source_sentence: どっちも欲しくない
    sentences:
      - 誰かが魔法の呪文で花をぬいぐるみに変えた
      - 呪文を試すため
      - 家の中を調べよう
  - source_sentence: この本は?
    sentences:
      - お鍋から匂いがしたから
      - なんでここに本が?
      - 両方行きたい
  - source_sentence: 他のは選べる?
    sentences:
      - 昨日夕飯にチキンヌードル食べた?
      - 別のは選べる?
      - チキンヌードル作った?
  - source_sentence: 猫のぬいぐるみ
    sentences:
      - 両方はだめ?
      - ぬいぐるみ
      - 夜ご飯を食べる前
model-index:
  - name: SentenceTransformer based on colorfulscoop/sbert-base-ja
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: custom arc semantics data jp
          type: custom-arc-semantics-data-jp
        metrics:
          - type: cosine_accuracy
            value: 0.8897058823529411
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.6581918001174927
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9044585987261147
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.6180122494697571
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9466666666666667
            name: Cosine Precision
          - type: cosine_recall
            value: 0.8658536585365854
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9692848872766847
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.8897058823529411
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 374.541748046875
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.9019607843137255
            name: Dot F1
          - type: dot_f1_threshold
            value: 374.541748046875
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.971830985915493
            name: Dot Precision
          - type: dot_recall
            value: 0.8414634146341463
            name: Dot Recall
          - type: dot_ap
            value: 0.9691104975300342
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.8970588235294118
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 453.2839660644531
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.9102564102564101
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 453.2839660644531
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.9594594594594594
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.8658536585365854
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.9687920395428105
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.8897058823529411
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 19.75204086303711
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.9047619047619047
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 23.66771125793457
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.8837209302325582
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.926829268292683
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.9690811253492324
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.8970588235294118
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 453.2839660644531
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.9102564102564101
            name: Max F1
          - type: max_f1_threshold
            value: 453.2839660644531
            name: Max F1 Threshold
          - type: max_precision
            value: 0.971830985915493
            name: Max Precision
          - type: max_recall
            value: 0.926829268292683
            name: Max Recall
          - type: max_ap
            value: 0.9692848872766847
            name: Max Ap

SentenceTransformer based on colorfulscoop/sbert-base-ja

This is a sentence-transformers model finetuned from colorfulscoop/sbert-base-ja on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: colorfulscoop/sbert-base-ja
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • csv

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '猫のぬいぐるみ',
    'ぬいぐるみ',
    '両方はだめ?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.8897
cosine_accuracy_threshold 0.6582
cosine_f1 0.9045
cosine_f1_threshold 0.618
cosine_precision 0.9467
cosine_recall 0.8659
cosine_ap 0.9693
dot_accuracy 0.8897
dot_accuracy_threshold 374.5417
dot_f1 0.902
dot_f1_threshold 374.5417
dot_precision 0.9718
dot_recall 0.8415
dot_ap 0.9691
manhattan_accuracy 0.8971
manhattan_accuracy_threshold 453.284
manhattan_f1 0.9103
manhattan_f1_threshold 453.284
manhattan_precision 0.9595
manhattan_recall 0.8659
manhattan_ap 0.9688
euclidean_accuracy 0.8897
euclidean_accuracy_threshold 19.752
euclidean_f1 0.9048
euclidean_f1_threshold 23.6677
euclidean_precision 0.8837
euclidean_recall 0.9268
euclidean_ap 0.9691
max_accuracy 0.8971
max_accuracy_threshold 453.284
max_f1 0.9103
max_f1_threshold 453.284
max_precision 0.9718
max_recall 0.9268
max_ap 0.9693

Training Details

Training Dataset

csv

  • Dataset: csv
  • Size: 680 training samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 680 samples:
    text1 text2 label
    type string string int
    details
    • min: 4 tokens
    • mean: 8.32 tokens
    • max: 15 tokens
    • min: 4 tokens
    • mean: 8.0 tokens
    • max: 14 tokens
    • 0: ~41.73%
    • 1: ~58.27%
  • Samples:
    text1 text2 label
    試すため ためすため 1
    お鍋からの香り お鍋から辛い匂いがしたから 1
    なんで話せるの? なんでしゃべれるの? 1
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.8,
        "size_average": true
    }
    

Evaluation Dataset

csv

  • Dataset: csv
  • Size: 680 evaluation samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 680 samples:
    text1 text2 label
    type string string int
    details
    • min: 4 tokens
    • mean: 8.21 tokens
    • max: 13 tokens
    • min: 4 tokens
    • mean: 8.04 tokens
    • max: 14 tokens
    • 0: ~39.71%
    • 1: ~60.29%
  • Samples:
    text1 text2 label
    村人について教えて 猫のぬいぐるみ 0
    ハロー やあ 1
    窓から出て行った オブリビオンの魔法 0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.8,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss custom-arc-semantics-data-jp_max_ap
None 0 - - 0.9118
1.0 68 0.0481 0.0342 0.9611
2.0 136 0.0307 0.0318 0.9656
3.0 204 0.0218 0.0282 0.9728
4.0 272 0.0169 0.0285 0.9706
5.0 340 0.0144 0.0289 0.9693

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.1.0
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}