sbert-base-ja-arc / README.md
LeoChiuu's picture
Add new SentenceTransformer model.
343e773 verified
|
raw
history blame
20.8 kB
metadata
base_model: colorfulscoop/sbert-base-ja
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:5330
  - loss:CoSENTLoss
widget:
  - source_sentence: 建物    フェンス    さまざまな 植物  生えて いる 複数  バルコニー  あり ます 
    sentences:
      - 建物  住人  とても 良い   です 
      -     切る 
      -     フラフープ  遊ぶ 子供
  - source_sentence: 自転車    しゃがむ  
    sentences:
      - ホッケープレイミザー   ショット
      - フットボール  試合  開始 する 準備  でき ました
      -   働いて  ます 
  - source_sentence: 階段  降りて いく  
    sentences:
      -   どこ   行き ます 
      - 野球 選手  ボール  打つ
      -      雪かき  して  ます 
  - source_sentence: 青い バケツ  持つ 少女   桟橋    跳ね ます 
    sentences:
      - 子供  帽子  かぶって  ました 
      -        女の子    散歩  ます 
      - 女の子  青い バケツ  運んで  ます 
  - source_sentence: 浜辺    掘る 
    sentences:
      -   ビーチ   ます 
      -    若い 女性  プレー する 準備  して  ます 
      - オートバイ  カー ショー でした 
model-index:
  - name: SentenceTransformer based on colorfulscoop/sbert-base-ja
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: custom arc semantics data jp
          type: custom-arc-semantics-data-jp
        metrics:
          - type: cosine_accuracy
            value: 0.724202626641651
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.949911892414093
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.8227550540667607
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.9255338907241821
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.7157464212678937
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9673852957435047
            name: Cosine Recall
          - type: cosine_ap
            value: 0.7633272592963735
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.726454033771107
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 626.92529296875
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.8233872916163325
            name: Dot F1
          - type: dot_f1_threshold
            value: 612.754638671875
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.7313304721030043
            name: Dot Precision
          - type: dot_recall
            value: 0.9419568822553898
            name: Dot Recall
          - type: dot_ap
            value: 0.7865839551255255
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.724953095684803
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 180.30792236328125
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.8225806451612903
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 244.3115997314453
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.705254839984196
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9867330016583747
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.7637811425109782
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.7238273921200751
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 8.075063705444336
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.8225616921269095
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 9.857145309448242
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.7154538021259199
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9673852957435047
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.7631772892743254
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.726454033771107
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 626.92529296875
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.8233872916163325
            name: Max F1
          - type: max_f1_threshold
            value: 612.754638671875
            name: Max F1 Threshold
          - type: max_precision
            value: 0.7313304721030043
            name: Max Precision
          - type: max_recall
            value: 0.9867330016583747
            name: Max Recall
          - type: max_ap
            value: 0.7865839551255255
            name: Max Ap

SentenceTransformer based on colorfulscoop/sbert-base-ja

This is a sentence-transformers model finetuned from colorfulscoop/sbert-base-ja on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: colorfulscoop/sbert-base-ja
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • csv

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '浜辺 の 砂 を 掘る 男',
    '男 が ビーチ に い ます 。',
    'オートバイ は カー ショー でした 。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.7242
cosine_accuracy_threshold 0.9499
cosine_f1 0.8228
cosine_f1_threshold 0.9255
cosine_precision 0.7157
cosine_recall 0.9674
cosine_ap 0.7633
dot_accuracy 0.7265
dot_accuracy_threshold 626.9253
dot_f1 0.8234
dot_f1_threshold 612.7546
dot_precision 0.7313
dot_recall 0.942
dot_ap 0.7866
manhattan_accuracy 0.725
manhattan_accuracy_threshold 180.3079
manhattan_f1 0.8226
manhattan_f1_threshold 244.3116
manhattan_precision 0.7053
manhattan_recall 0.9867
manhattan_ap 0.7638
euclidean_accuracy 0.7238
euclidean_accuracy_threshold 8.0751
euclidean_f1 0.8226
euclidean_f1_threshold 9.8571
euclidean_precision 0.7155
euclidean_recall 0.9674
euclidean_ap 0.7632
max_accuracy 0.7265
max_accuracy_threshold 626.9253
max_f1 0.8234
max_f1_threshold 612.7546
max_precision 0.7313
max_recall 0.9867
max_ap 0.7866

Training Details

Training Dataset

csv

  • Dataset: csv
  • Size: 5,330 training samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string int
    details
    • min: 7 tokens
    • mean: 36.64 tokens
    • max: 103 tokens
    • min: 8 tokens
    • mean: 22.81 tokens
    • max: 77 tokens
    • 0: ~33.30%
    • 1: ~66.70%
  • Samples:
    text1 text2 label
    草 の 山 で 寝て いる 男 。 男 は 目 を 覚まして いる 。 1
    セーター と ジーンズ を 着て いる 女性 が 屋外 公園 で 2 人 の 小さな 子供 と タイヤ スイング で 遊んで い ます 。 母親 が 2 人 の 子供 と 遊んで い ます 。 1
    ジョガー は 、 伸ばした 木 の 枝 の 下 を 通り ます 。 ジョガー は 別の ツリー ブランチ を 回って い ます 。 1
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

csv

  • Dataset: csv
  • Size: 5,330 evaluation samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string int
    details
    • min: 8 tokens
    • mean: 35.92 tokens
    • max: 177 tokens
    • min: 4 tokens
    • mean: 22.45 tokens
    • max: 68 tokens
    • 0: ~33.30%
    • 1: ~66.70%
  • Samples:
    text1 text2 label
    空中 で スタント を 行う スノー ボーダー 。 危険な スタント を 行う スノー ボーダー 1
    高級 レストラン で タイル 張り の レストラン カレンダー の 背後 で 2 人 の シェフ が 語り 合い ます 。 レストラン で 食事 を する 2 人 の シェフ 。 1
    年配 の 男性 が 水上 で 手 row ぎ ボート に 立って い ます 。 人 は 橋 から 飛び降りて い ます 1
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.4
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.4
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss custom-arc-semantics-data-jp_max_ap
0 0 - - 0.5488
1.0 334 3.4293 2.3784 0.7866

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.1.0
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}