|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: text-to-video |
|
tags: |
|
- diffusion |
|
- video-to-video |
|
- stable-diffusion |
|
--- |
|
|
|
# Live2Diff: **Live** Stream Translation via Uni-directional Attention in Video **Diffusion** Models |
|
|
|
<p align="center"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/62fb2a9dc95d426ff8f74c8d/XoBgMAR3O13n7ib3b0Qj2.png" width=100%> |
|
</p> |
|
|
|
**Authors:** [Zhening Xing](https://github.com/LeoXing1996), [Gereon Fox](https://people.mpi-inf.mpg.de/~gfox/), [Yanhong Zeng](https://zengyh1900.github.io/), [Xingang Pan](https://xingangpan.github.io/), [Mohamed Elgharib](https://people.mpi-inf.mpg.de/~elgharib/), [Christian Theobalt](https://people.mpi-inf.mpg.de/~theobalt/), [Kai Chen †](https://chenkai.site/) (†: corresponding author) |
|
|
|
|
|
[![arXiv](https://img.shields.io/badge/arXiv-2407.08701-b31b1b.svg)](https://arxiv.org/abs/2407.08701)[![Project Page](https://img.shields.io/badge/Project-Page-blue)](https://live2diff.github.io/)[![Github Repo](https://img.shields.io/badge/Github-Repo-blue?logo=GitHub)](https://live2diff.github.io/) |
|
|
|
## Key Features |
|
|
|
<p align="center"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/62fb2a9dc95d426ff8f74c8d/qJ3-K3m_8LMGQWVko7p07.png" width=100%> |
|
</p> |
|
|
|
* **Uni-directional** Temporal Attention with **Warmup** Mechanism |
|
* **Multitimestep KV-Cache** for Temporal Attention during Inference |
|
* **Depth Prior** for Better Structure Consistency |
|
* Compatible with **DreamBooth and LoRA** for Various Styles |
|
* **TensorRT** Supported |
|
|
|
The speed evaluation is conducted on **Ubuntu 20.04.6 LTS** and **Pytorch 2.2.2** with **RTX 4090 GPU** and **Intel(R) Xeon(R) Platinum 8352V CPU**. Denoising steps are set as 2. |
|
|
|
| Resolution | TensorRT | FPS | |
|
| :--------: | :------: | :-------: | |
|
| 512 x 512 | **On** | **16.43** | |
|
| 512 x 512 | Off | 6.91 | |
|
| 768 x 512 | **On** | **12.15** | |
|
| 768 x 512 | Off | 6.29 | |
|
|
|
## Real-Time Video2Video Demo |
|
|
|
<div align="center"> |
|
<table align="center"> |
|
<tbody> |
|
<tr align="center"> |
|
<td> |
|
<p> Human Face (Web Camera Input) </p> |
|
</td> |
|
<td> |
|
<p> Anime Character (Screen Video Input) </p> |
|
</td> |
|
</tr> |
|
<tr align="center"> |
|
<td> |
|
<video controls autoplay src="https://github.com/user-attachments/assets/c39e4b1f-e336-479a-af72-d07b1e3c6e30" width="100%"> |
|
</td> |
|
<td> |
|
<video controls autoplay src="https://github.com/user-attachments/assets/42727f46-b3cf-48ea-971c-9f653bf5a264" width="80%"> |
|
</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
</div> |
|
|
|
## Acknowledgements |
|
|
|
The video and image demos in this GitHub repository were generated using [LCM-LoRA](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5). Stream batch in [StreamDiffusion](https://github.com/cumulo-autumn/StreamDiffusion) is used for model acceleration. The design of Video Diffusion Model is adopted from [AnimateDiff](https://github.com/guoyww/AnimateDiff). We use a third-party implementation of [MiDaS](https://github.com/lewiji/MiDaS) implementation which support onnx export. Our online demo is modified from [Real-Time-Latent-Consistency-Model](https://github.com/radames/Real-Time-Latent-Consistency-Model/). |
|
|
|
## BibTex |
|
|
|
If you find it helpful, please consider citing our work: |
|
|
|
```bibtex |
|
@article{xing2024live2diff, |
|
title={Live2Diff: Live Stream Translation via Uni-directional Attention in Video Diffusion Models}, |
|
author={Zhening Xing and Gereon Fox and Yanhong Zeng and Xingang Pan and Mohamed Elgharib and Christian Theobalt and Kai Chen}, |
|
booktitle={arXiv preprint arxiv:2407.08701}, |
|
year={2024} |
|
} |
|
``` |
|
|