Live2Diff / README.md
Leoxing's picture
Update README.md
0e6801b verified
---
license: apache-2.0
language:
- en
pipeline_tag: text-to-video
tags:
- diffusion
- video-to-video
- stable-diffusion
---
# Live2Diff: **Live** Stream Translation via Uni-directional Attention in Video **Diffusion** Models
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/62fb2a9dc95d426ff8f74c8d/XoBgMAR3O13n7ib3b0Qj2.png" width=100%>
</p>
**Authors:** [Zhening Xing](https://github.com/LeoXing1996), [Gereon Fox](https://people.mpi-inf.mpg.de/~gfox/), [Yanhong Zeng](https://zengyh1900.github.io/), [Xingang Pan](https://xingangpan.github.io/), [Mohamed Elgharib](https://people.mpi-inf.mpg.de/~elgharib/), [Christian Theobalt](https://people.mpi-inf.mpg.de/~theobalt/), [Kai Chen †](https://chenkai.site/) (†: corresponding author)
[![arXiv](https://img.shields.io/badge/arXiv-2407.08701-b31b1b.svg)](https://arxiv.org/abs/2407.08701)[![Project Page](https://img.shields.io/badge/Project-Page-blue)](https://live2diff.github.io/)[![Github Repo](https://img.shields.io/badge/Github-Repo-blue?logo=GitHub)](https://live2diff.github.io/)
## Key Features
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/62fb2a9dc95d426ff8f74c8d/qJ3-K3m_8LMGQWVko7p07.png" width=100%>
</p>
* **Uni-directional** Temporal Attention with **Warmup** Mechanism
* **Multitimestep KV-Cache** for Temporal Attention during Inference
* **Depth Prior** for Better Structure Consistency
* Compatible with **DreamBooth and LoRA** for Various Styles
* **TensorRT** Supported
The speed evaluation is conducted on **Ubuntu 20.04.6 LTS** and **Pytorch 2.2.2** with **RTX 4090 GPU** and **Intel(R) Xeon(R) Platinum 8352V CPU**. Denoising steps are set as 2.
| Resolution | TensorRT | FPS |
| :--------: | :------: | :-------: |
| 512 x 512 | **On** | **16.43** |
| 512 x 512 | Off | 6.91 |
| 768 x 512 | **On** | **12.15** |
| 768 x 512 | Off | 6.29 |
## Real-Time Video2Video Demo
<div align="center">
<table align="center">
<tbody>
<tr align="center">
<td>
<p> Human Face (Web Camera Input) </p>
</td>
<td>
<p> Anime Character (Screen Video Input) </p>
</td>
</tr>
<tr align="center">
<td>
<video controls autoplay src="https://github.com/user-attachments/assets/c39e4b1f-e336-479a-af72-d07b1e3c6e30" width="100%">
</td>
<td>
<video controls autoplay src="https://github.com/user-attachments/assets/42727f46-b3cf-48ea-971c-9f653bf5a264" width="80%">
</td>
</tr>
</tbody>
</table>
</div>
## Acknowledgements
The video and image demos in this GitHub repository were generated using [LCM-LoRA](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5). Stream batch in [StreamDiffusion](https://github.com/cumulo-autumn/StreamDiffusion) is used for model acceleration. The design of Video Diffusion Model is adopted from [AnimateDiff](https://github.com/guoyww/AnimateDiff). We use a third-party implementation of [MiDaS](https://github.com/lewiji/MiDaS) implementation which support onnx export. Our online demo is modified from [Real-Time-Latent-Consistency-Model](https://github.com/radames/Real-Time-Latent-Consistency-Model/).
## BibTex
If you find it helpful, please consider citing our work:
```bibtex
@article{xing2024live2diff,
title={Live2Diff: Live Stream Translation via Uni-directional Attention in Video Diffusion Models},
author={Zhening Xing and Gereon Fox and Yanhong Zeng and Xingang Pan and Mohamed Elgharib and Christian Theobalt and Kai Chen},
booktitle={arXiv preprint arxiv:2407.08701},
year={2024}
}
```