metadata
library_name: UniDepth
tags:
- depth_anything
- depth-estimation
- monocular-metric-depth-estimation
- pytorch_model_hub_mixin
- model_hub_mixin
repo_url: https://github.com/lpiccinelli-eth/UniDepth
Depth Anything model, small
The model card for our paper Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data.
You may also try our demo and visit our project page.
Installation
First, install the Depth Anything package:
git clone https://github.com/LiheYoung/Depth-Anything
cd Depth-Anything
pip install -r requirements.txt
Usage
Here's how to run the model:
import numpy as np
from PIL import Image
import cv2
import torch
from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from torchvision.transforms import Compose
model = DepthAnything.from_pretrained("LiheYoung/depth_anything_vitl14")
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
image = Image.open("...")
image = np.array(image) / 255.0
image = transform({'image': image})['image']
image = torch.from_numpy(image).unsqueeze(0)
depth = model(image)