|
--- |
|
library_name: transformers |
|
license: mit |
|
language: |
|
- en |
|
tags: |
|
- retrieval |
|
- multi-modal |
|
- knowledge-based visual question answering |
|
- FLMR |
|
- PreFLMR |
|
--- |
|
|
|
# PreFLMR model card |
|
|
|
|
|
### Model Description |
|
|
|
- **Model type:** PreFLMR is an open-source model for multimodal knowledge retrieval. It is a transformer-based model that uses a combination of text and image inputs to retrieve relevant documents from a large corpus. |
|
- **Language(s) (NLP):** English |
|
- **License:** MIT License |
|
|
|
### Paper and resources for more detail |
|
|
|
- **Blog Post for quick overview:** https://www.jinghong-chen.net/preflmr-sota-open-sourced-multi/ |
|
- **Paper:** https://arxiv.org/abs/2402.08327 |
|
- **Gradio Demo:** https://u60544-b8d4-53eaa55d.westx.seetacloud.com:8443/ |
|
- **Repository:** https://github.com/LinWeizheDragon/FLMR |
|
- **Project Page:** https://preflmr.github.io/ |
|
|
|
## Uses |
|
|
|
### Direct Use |
|
|
|
|
|
This model can be used directly to retrieve documents from a large corpus using a combination of text and image input queries. The retrieval useage can be found in the [official implementation](https://github.com/LinWeizheDragon/FLMR). |
|
|
|
### Downstream Use |
|
|
|
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> |
|
|
|
This model can be used combined with language models to create a retrieval-augmented language model. The useage for Knowledge-based VQA can be found in [RAVQA](https://github.com/linweizhedragon/retrieval-augmented-visual-question-answering) |
|
|
|
## How to Get Started with the Model |
|
|
|
For details of training, indexing, and performing retrieval, please refer to [here](https://github.com/LinWeizheDragon/FLMR). |
|
|
|
## Training datasets |
|
The model is pre-trained on three types of tasks with a total of nine datasets: |
|
1. Image to Text retrieval: WIT, KVQA, and CC3M |
|
2. Question to Text retrieval: MSMARCO |
|
3. Image & Question to Text retrieval: LLaVA, OVEN, OKVQA, Infoseek and E-VQA |
|
|
|
These datasets were converted to retrieval format. For details on the dataset split and conversion process, please refer to the paper [PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers](https://arxiv.org/abs/2402.08327). We will release the proprocessed datasets soon. |
|
|
|
|
|
## Evaluation datasets |
|
We evaluate our models on WIT, LLaVA, OVEN, KVQA, IGLUE (subset of WIT), Infoseek, E-VQA, OKVQA and MSMARCO. |
|
| Model | Vision Encoder | Text Encoder | Checkpoint Name | No. Param. | WIT | LLaVA | OVEN | KVQA | IGLUE | Infoseek | E-VQA | OKVQA | MSMARCO | |
|
|---------|----------------|--------------|-------------------------------------------------------------|-------|-------|--------|-------|-------|-------|----------|-------|--------|-------| |
|
| PreFLMR | ViT-B | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-B](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-B) | 327M | 41.7 | 67.2 | 46.3 | 28.6 | 57.3 | 48.8 | 67.9 | 66.1 | 79.5 | |
|
| PreFLMR | ViT-L | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-L](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L) | 543M | 60.5 | 71.8 | 59.8 | 43.6 | 69.2 | 57.9 | 70.8 | 68.5 | 78.7 | |
|
| PreFLMR | ViT-G | Base-v2 | [LinWeizheDragon/PreFLMR_ViT-G](https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-G) | 2.1B | 61.5 | 72.4 | 63.4 | 42.1 |71.5 | 59.6 | 73.1 | 68.6 | 78.6 | |
|
|
|
For the evaluation metrics, WIT uses Recall@10, IGLUE uses Recall@1, and all the rest datasets use Recall@5. |
|
|
|
|
|
## Citation |
|
|
|
**BibTeX:** |
|
``` |
|
@article{Lin_Mei_Chen_Byrne_2024, |
|
title={PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers}, |
|
url={http://arxiv.org/abs/2402.08327}, |
|
number={arXiv:2402.08327}, |
|
publisher={arXiv}, |
|
author={Lin, Weizhe and Mei, Jingbiao and Chen, Jinghong and Byrne, Bill}, |
|
year={2024}} |
|
``` |