G0515HMA9H
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1309
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.2171 | 0.09 | 10 | 2.8982 |
2.6882 | 0.18 | 20 | 2.2647 |
1.8484 | 0.27 | 30 | 1.3286 |
0.9274 | 0.36 | 40 | 0.4311 |
0.2813 | 0.45 | 50 | 0.1829 |
0.1669 | 0.54 | 60 | 0.1548 |
0.153 | 0.63 | 70 | 0.1492 |
0.1515 | 0.73 | 80 | 0.1494 |
0.1428 | 0.82 | 90 | 0.1492 |
0.1454 | 0.91 | 100 | 0.1488 |
0.1497 | 1.0 | 110 | 0.1486 |
0.1434 | 1.09 | 120 | 0.1489 |
0.145 | 1.18 | 130 | 0.1479 |
0.1455 | 1.27 | 140 | 0.1470 |
0.1485 | 1.36 | 150 | 0.1464 |
0.1421 | 1.45 | 160 | 0.1494 |
0.1446 | 1.54 | 170 | 0.1463 |
0.1448 | 1.63 | 180 | 0.1449 |
0.1462 | 1.72 | 190 | 0.1491 |
0.1455 | 1.81 | 200 | 0.1469 |
0.1471 | 1.9 | 210 | 0.1459 |
0.146 | 1.99 | 220 | 0.1460 |
0.1423 | 2.08 | 230 | 0.1442 |
0.136 | 2.18 | 240 | 0.1406 |
0.1376 | 2.27 | 250 | 0.1414 |
0.1378 | 2.36 | 260 | 0.1390 |
0.1353 | 2.45 | 270 | 0.1366 |
0.1322 | 2.54 | 280 | 0.1349 |
0.13 | 2.63 | 290 | 0.1321 |
0.1292 | 2.72 | 300 | 0.1310 |
0.1317 | 2.81 | 310 | 0.1307 |
0.1315 | 2.9 | 320 | 0.1309 |
0.1299 | 2.99 | 330 | 0.1309 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for Litzy619/G0515HMA9H
Base model
google/gemma-2b