O0428HMA5
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1828
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5402 | 0.09 | 10 | 0.1748 |
0.1661 | 0.18 | 20 | 0.1584 |
0.1504 | 0.27 | 30 | 0.1670 |
0.1555 | 0.36 | 40 | 0.1533 |
0.1499 | 0.45 | 50 | 0.1547 |
0.1505 | 0.54 | 60 | 0.1519 |
0.1523 | 0.63 | 70 | 0.1469 |
0.1513 | 0.73 | 80 | 0.1567 |
0.1456 | 0.82 | 90 | 0.1465 |
0.1843 | 0.91 | 100 | 0.2555 |
1.2658 | 1.0 | 110 | 0.2093 |
0.8089 | 1.09 | 120 | 0.1813 |
0.1539 | 1.18 | 130 | 0.1515 |
1.0124 | 1.27 | 140 | 0.1645 |
0.3947 | 1.36 | 150 | 0.1674 |
0.3807 | 1.45 | 160 | 0.1619 |
0.1511 | 1.54 | 170 | 0.1515 |
0.1524 | 1.63 | 180 | 0.1492 |
0.1488 | 1.72 | 190 | 0.1483 |
0.1513 | 1.81 | 200 | 0.1556 |
0.5422 | 1.9 | 210 | 0.8696 |
0.7566 | 1.99 | 220 | 1.3407 |
0.4939 | 2.08 | 230 | 0.2669 |
0.2818 | 2.18 | 240 | 0.2439 |
0.2348 | 2.27 | 250 | 0.2392 |
0.2358 | 2.36 | 260 | 0.2121 |
0.1847 | 2.45 | 270 | 0.1995 |
0.1858 | 2.54 | 280 | 0.1898 |
0.1845 | 2.63 | 290 | 0.1867 |
0.1889 | 2.72 | 300 | 0.1845 |
0.1746 | 2.81 | 310 | 0.1841 |
0.1758 | 2.9 | 320 | 0.1830 |
0.1739 | 2.99 | 330 | 0.1828 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0428HMA5
Base model
allenai/OLMo-1B