mus_promoter-finetuned-lora-500m-1000g

This model is a fine-tuned version of InstaDeepAI/nucleotide-transformer-500m-1000g on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2791
  • F1: 0.9211
  • Matthews Correlation: 0.8076
  • Accuracy: 0.9062
  • F1 Score: 0.9211

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss F1 Matthews Correlation Accuracy F1 Score
0.6279 0.43 100 0.4652 0.8986 0.7910 0.8906 0.8986
0.3719 0.85 200 0.3562 0.9167 0.8113 0.9062 0.9167
0.3615 1.28 300 0.6468 0.8718 0.6790 0.8438 0.8718
0.3425 1.71 400 0.4302 0.8889 0.7210 0.8594 0.8889
0.3106 2.14 500 0.3645 0.9041 0.7773 0.8906 0.9041
0.3218 2.56 600 0.2542 0.9333 0.8395 0.9219 0.9333
0.2135 2.99 700 0.4137 0.9211 0.8076 0.9062 0.9211
0.2512 3.42 800 0.3547 0.9351 0.8414 0.9219 0.9351
0.1963 3.85 900 0.2171 0.9333 0.8395 0.9219 0.9333
0.1304 4.27 1000 0.2791 0.9211 0.8076 0.9062 0.9211

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
640M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for LiukG/mus_promoter-finetuned-lora-500m-1000g

Finetuned
(15)
this model