|
--- |
|
license: cc-by-4.0 |
|
language: |
|
- az |
|
metrics: |
|
- pearsonr |
|
base_model: |
|
- sentence-transformers/LaBSE |
|
pipeline_tag: sentence-similarity |
|
widget: |
|
- source_sentence: Bu xoşbəxt bir insandır |
|
sentences: |
|
- Bu xoşbəxt bir itdir |
|
- Bu çox xoşbəxt bir insandır |
|
- Bu gün günəşli bir gündür |
|
example_title: Sentence Similarity |
|
tags: |
|
- labse |
|
--- |
|
|
|
# TEmA-small |
|
|
|
This model is a fine-tuned version of the [LaBSE](https://huggingface.co/sentence-transformers/LaBSE), which is specialized for sentence similarity tasks in Azerbaijan texts. |
|
It maps sentences and paragraphs to a 768-dimensional dense vector space, useful for tasks like clustering, semantic search, and more. |
|
|
|
|
|
|
|
|
|
## Benchmark Results |
|
|
|
| STSBenchmark | biosses-sts | sickr-sts | sts12-sts | sts13-sts | sts15-sts | sts16-sts | Average Pearson | Model | |
|
|--------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------------|------------------------------------| |
|
| 0.8253 | 0.7859 | 0.7924 | 0.8444 | 0.7490 | 0.8141 | 0.7600 | 0.7959 | TEmA-small | |
|
| 0.7872 | 0.8303 | 0.7801 | 0.7978 | 0.6963 | 0.8052 | 0.7794 | 0.7823 | Cohere/embed-multilingual-v3.0 | |
|
| 0.7927 | 0.6672 | 0.7758 | 0.8122 | 0.7312 | 0.7831 | 0.7416 | 0.7577 | BAAI/bge-m3 | |
|
| 0.7572 | 0.8139 | 0.7328 | 0.7646 | 0.6318 | 0.7542 | 0.7092 | 0.7377 | intfloat/multilingual-e5-large-instruct | |
|
| 0.7400 | 0.8216 | 0.6946 | 0.7098 | 0.6781 | 0.7637 | 0.7222 | 0.7329 | labse_stripped | |
|
| 0.7485 | 0.7714 | 0.7271 | 0.7170 | 0.6496 | 0.7570 | 0.7255 | 0.7280 | intfloat/multilingual-e5-large | |
|
| 0.7245 | 0.8237 | 0.6839 | 0.6570 | 0.7125 | 0.7612 | 0.7386 | 0.7288 | OpenAI/text-embedding-3-large | |
|
| 0.7363 | 0.8148 | 0.7067 | 0.7050 | 0.6535 | 0.7514 | 0.7070 | 0.7250 | sentence-transformers/LaBSE | |
|
| 0.7376 | 0.7917 | 0.7190 | 0.7441 | 0.6286 | 0.7461 | 0.7026 | 0.7242 | intfloat/multilingual-e5-small | |
|
| 0.7192 | 0.8198 | 0.7160 | 0.7338 | 0.5815 | 0.7318 | 0.6973 | 0.7142 | Cohere/embed-multilingual-light-v3.0 | |
|
| 0.6960 | 0.8185 | 0.6950 | 0.6752 | 0.5899 | 0.7186 | 0.6790 | 0.6960 | intfloat/multilingual-e5-base | |
|
| 0.5830 | 0.2486 | 0.5921 | 0.5593 | 0.5559 | 0.5404 | 0.5289 | 0.5155 | antoinelouis/colbert-xm | |
|
|
|
|
|
[STS-Benchmark](https://github.com/LocalDoc-Azerbaijan/STS-Benchmark) |
|
|
|
|
|
|
|
|
|
## Accuracy Results |
|
- **Cosine Distance:** 96.63 |
|
- **Manhattan Distance:** 96.52 |
|
- **Euclidean Distance:** 96.57 |
|
|
|
|
|
|
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
# Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
# Function to normalize embeddings |
|
def normalize_embeddings(embeddings): |
|
return embeddings / embeddings.norm(dim=1, keepdim=True) |
|
|
|
# Sentences we want embeddings for |
|
sentences = [ |
|
"Bu xoşbəxt bir insandır", |
|
"Bu çox xoşbəxt bir insandır", |
|
"Bu gün günəşli bir gündür" |
|
] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('LocalDoc/TEmA-small') |
|
model = AutoModel.from_pretrained('LocalDoc/TEmA-small') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
# Normalize embeddings |
|
sentence_embeddings = normalize_embeddings(sentence_embeddings) |
|
|
|
# Calculate cosine similarities |
|
cosine_similarities = torch.nn.functional.cosine_similarity( |
|
sentence_embeddings[0].unsqueeze(0), |
|
sentence_embeddings[1:], |
|
dim=1 |
|
) |
|
|
|
print("Cosine Similarities:") |
|
for i, score in enumerate(cosine_similarities): |
|
print(f"Sentence 1 <-> Sentence {i+2}: {score:.4f}") |
|
``` |
|
|
|
|