metadata
language:
- en
license: apache-2.0
datasets:
- Locutusque/InstructMixCleaned
- berkeley-nest/Nectar
pipeline_tag: text-generation
base_model: Locutusque/TinyMistral-248M
widget:
- text: >-
<|USER|> Design a Neo4j database and Cypher function snippet to Display
Extreme Dental hygiene: Using Mouthwash for Analysis for Beginners.
Implement if/else or switch/case statements to handle different conditions
related to the Consent. Provide detailed comments explaining your control
flow and the reasoning behind each decision. <|ASSISTANT|>
- text: '<|USER|> Write me a story about a magical place. <|ASSISTANT|> '
- text: >-
<|USER|> Write me an essay about the life of George Washington
<|ASSISTANT|>
- text: '<|USER|> Solve the following equation 2x + 10 = 20 <|ASSISTANT|> '
- text: >-
<|USER|> Craft me a list of some nice places to visit around the world.
<|ASSISTANT|>
- text: >-
<|USER|> How to manage a lazy employee: Address the employee verbally.
Don't allow an employee's laziness or lack of enthusiasm to become a
recurring issue. Tell the employee you're hoping to speak with them about
workplace expectations and performance, and schedule a time to sit down
together. Question: To manage a lazy employee, it is suggested to talk to
the employee. True, False, or Neither? <|ASSISTANT|>
inference:
parameters:
temperature: 0.5
do_sample: true
top_p: 0.5
top_k: 30
max_new_tokens: 250
repetition_penalty: 1.15
model-index:
- name: TinyMistral-248M-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 24.32
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 27.52
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.18
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.94
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.2
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-Instruct
name: Open LLM Leaderboard
Base model Locutusque/TinyMistral-248M fully fine-tuned on Locutusque/InstructMix. During validation, this model achieved an average perplexity of 3.23 on Locutusque/InstructMix dataset. It has so far been trained on approximately 608,000 examples. More epochs are planned for this model.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 28.19 |
AI2 Reasoning Challenge (25-Shot) | 24.32 |
HellaSwag (10-Shot) | 27.52 |
MMLU (5-Shot) | 25.18 |
TruthfulQA (0-shot) | 41.94 |
Winogrande (5-shot) | 50.20 |
GSM8k (5-shot) | 0.00 |