leaderboard-pr-bot's picture
Adding Evaluation Results
a1deec4 verified
|
raw
history blame
5.14 kB
metadata
language:
  - en
license: apache-2.0
datasets:
  - Locutusque/InstructMixCleaned
  - berkeley-nest/Nectar
pipeline_tag: text-generation
base_model: Locutusque/TinyMistral-248M
widget:
  - text: >-
      <|USER|> Design a Neo4j database and Cypher function snippet to Display
      Extreme Dental hygiene: Using Mouthwash for Analysis for Beginners.
      Implement if/else or switch/case statements to handle different conditions
      related to the Consent. Provide detailed comments explaining your control
      flow and the reasoning behind each decision. <|ASSISTANT|> 
  - text: '<|USER|> Write me a story about a magical place. <|ASSISTANT|> '
  - text: >-
      <|USER|> Write me an essay about the life of George Washington
      <|ASSISTANT|> 
  - text: '<|USER|> Solve the following equation 2x + 10 = 20 <|ASSISTANT|> '
  - text: >-
      <|USER|> Craft me a list of some nice places to visit around the world.
      <|ASSISTANT|> 
  - text: >-
      <|USER|> How to manage a lazy employee: Address the employee verbally.
      Don't allow an employee's laziness or lack of enthusiasm to become a
      recurring issue. Tell the employee you're hoping to speak with them about
      workplace expectations and performance, and schedule a time to sit down
      together. Question: To manage a lazy employee, it is suggested to talk to
      the employee. True, False, or Neither? <|ASSISTANT|> 
inference:
  parameters:
    temperature: 0.5
    do_sample: true
    top_p: 0.5
    top_k: 30
    max_new_tokens: 250
    repetition_penalty: 1.15
model-index:
  - name: TinyMistral-248M-Instruct
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 24.32
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 27.52
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 25.18
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 41.94
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 50.2
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-Instruct
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 0
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-Instruct
          name: Open LLM Leaderboard

Base model Locutusque/TinyMistral-248M fully fine-tuned on Locutusque/InstructMix. During validation, this model achieved an average perplexity of 3.23 on Locutusque/InstructMix dataset. It has so far been trained on approximately 608,000 examples. More epochs are planned for this model.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 28.19
AI2 Reasoning Challenge (25-Shot) 24.32
HellaSwag (10-Shot) 27.52
MMLU (5-Shot) 25.18
TruthfulQA (0-shot) 41.94
Winogrande (5-shot) 50.20
GSM8k (5-shot) 0.00