bartowski's picture
Update README.md
0a3f7f9 verified
|
raw
history blame
7.49 kB
metadata
license: other
library_name: transformers
base_model: meta-llama/Meta-Llama-3-8B
datasets:
  - mlabonne/orpo-dpo-mix-40k
  - Open-Orca/SlimOrca-Dedup
  - jondurbin/airoboros-3.2
  - microsoft/orca-math-word-problems-200k
  - m-a-p/Code-Feedback
  - MaziyarPanahi/WizardLM_evol_instruct_V2_196k
model-index:
  - name: llama-3-neural-chat-v1-8b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 60.84
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 84.13
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.69
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 56.34
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 78.22
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 54.81
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
          name: Open LLM Leaderboard

llama-3-neural-chat-v1-8b

image/png

Model Details

Model Description

I fine-tuned llama-3 8B on an approach similar to Intel's neural chat language model. I have slightly modified the data sources so it is stronger in coding, math, and writing. I use both SFT and DPO.

Quants

EXL2 @bartowski

GGUF @bartowski

Uses

This model has great performance in writing and coding.

Training Data

  • Open-Orca/SlimOrca-Dedup
  • jondurbin/airoboros-3.2
  • microsoft/orca-math-word-problems-200k
  • m-a-p/Code-Feedback
  • MaziyarPanahi/WizardLM_evol_instruct_V2_196k
  • mlabonne/orpo-dpo-mix-40k

Direct Use

Conversational AI.

Evaluations

Tasks Version Filter n-shot Metric Value Stderr
truthfulqa_mc2 2 none 0 acc 0.5627 ± 0.0154
gsm8k 3 strict-match 5 exact_match 0.5481 ± 0.0137
flexible-extract 5 exact_match 0.5557 ± 0.0137
agieval_nous N/A none 0 acc 0.3763 ± 0.0093
none 0 acc_norm 0.3665 ± 0.0093
- agieval_aqua_rat 1 none 0 acc 0.2087 ± 0.0255
none 0 acc_norm 0.2047 ± 0.0254
- agieval_logiqa_en 1 none 0 acc 0.3456 ± 0.0187
none 0 acc_norm 0.3594 ± 0.0188
- agieval_lsat_ar 1 none 0 acc 0.1826 ± 0.0255
none 0 acc_norm 0.1783 ± 0.0253
- agieval_lsat_lr 1 none 0 acc 0.3549 ± 0.0212
none 0 acc_norm 0.3451 ± 0.0211
- agieval_lsat_rc 1 none 0 acc 0.5242 ± 0.0305
none 0 acc_norm 0.5130 ± 0.0305
- agieval_sat_en 1 none 0 acc 0.6650 ± 0.0330
none 0 acc_norm 0.6505 ± 0.0333
- agieval_sat_en_without_passage 1 none 0 acc 0.4175 ± 0.0344
none 0 acc_norm 0.3738 ± 0.0338
- agieval_sat_math 1 none 0 acc 0.4227 ± 0.0334
none 0 acc_norm 0.3682 ± 0.0326

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 66.50
AI2 Reasoning Challenge (25-Shot) 60.84
HellaSwag (10-Shot) 84.13
MMLU (5-Shot) 64.69
TruthfulQA (0-shot) 56.34
Winogrande (5-shot) 78.22
GSM8k (5-shot) 54.81