LoftQ's picture
Update README.md
a412479 verified
metadata
license: mit
language:
  - en
pipeline_tag: text-generation
tags:
  - 'quantization '
  - lora

LoftQ Initialization

| Paper | Code | PEFT Example |

LoftQ (LoRA-fine-tuning-aware Quantization) provides a quantized backbone Q and LoRA adapters A and B, given a full-precision pre-trained weight W.

This model, Llama-2-7b-hf-4bit-64rank, is obtained from LLAMA-2-7b. The backbone is under LoftQ/Llama-2-7b-hf-4bit-64rank and LoRA adapters are under the subfolder='loftq_init'.

Model Info

Backbone

  • Stored format: bitsandbytes nf4
  • Size: ~ 4.2 GiB
  • Loaded format: bitsandbytes nf4
  • Size loaded on GPU: ~ 4.2 GiB

LoRA adapters

  • rank: 64
  • lora_alpha: 16
  • target_modules: ["down_proj", "up_proj", "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj"]

Usage

Training Here's an example of loading this model and preparing for the LoRA fine-tuning.

import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel

MODEL_ID = "LoftQ/Llama-2-7b-hf-4bit-64rank"

base_model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
peft_model = PeftModel.from_pretrained(
    base_model,
    MODEL_ID,
    subfolder="loftq_init",
    is_trainable=True,
)

# Do training with peft_model ...

Experiment Results

We have conducted experiments on supervised fine-tuning of GSM8K and WikiText-2.

Model Bits Rank LoRA Initial GSM8K WikiText-2
LLAMA-2-7b 16 64 Gaussian + 0 36.9 5.08
LLAMA-2-7b 4 64 Gaussian + 0 (QLoRA) 35.1 5.70
LLAMA-2-7b 4 64 LoftQ 35.0 5.24

Inference Here is an example code for inference after the model has been fine-tuned on GSM8K.

import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel

MODEL_ID = "LoftQ/Llama-2-7b-hf-4bit-64rank"

base_model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID, 
    torch_dtype=torch.bfloat16,  # you may change it with different models
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,  # bfloat16 is recommended
        bnb_4bit_use_double_quant=False,
        bnb_4bit_quant_type='nf4',
    ),
)
peft_model = PeftModel.from_pretrained(
    base_model,
    MODEL_ID,
    subfolder="gsm8k",
    is_trainable=True,
)

# Do inference with peft_model ...

See the full code at our Github Repo

Citation

@article{li2023loftq,
  title={Loftq: Lora-fine-tuning-aware quantization for large language models},
  author={Li, Yixiao and Yu, Yifan and Liang, Chen and He, Pengcheng and Karampatziakis, Nikos and Chen, Weizhu and Zhao, Tuo},
  journal={arXiv preprint arXiv:2310.08659},
  year={2023}
}