|
--- |
|
license: mit |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
tags: |
|
- 'quantization ' |
|
- lora |
|
--- |
|
# LoftQ Initialization |
|
|
|
| [Paper](https://arxiv.org/abs/2310.08659) | [Code](https://github.com/yxli2123/LoftQ) | [PEFT Example](https://github.com/huggingface/peft/tree/main/examples/loftq_finetuning) | |
|
|
|
LoftQ (LoRA-fine-tuning-aware Quantization) provides a quantized backbone Q and LoRA adapters A and B, given a full-precision pre-trained weight W. |
|
|
|
This model, `phi-2-4bit-64rank`, is obtained from [phi-2](https://huggingface.co/microsoft/phi-2). |
|
The backbone is under `LoftQ/phi-2-4bit-64rank` and LoRA adapters are under the `subfolder='loftq_init'`. |
|
|
|
## Model Info |
|
### Backbone |
|
- Stored format: `torch.float16` |
|
- Size: ~ 5.5 GiB |
|
- Loaded format: bitsandbytes nf4 |
|
- Size loaded on GPU: ~1.4 GiB |
|
|
|
### LoRA adapters |
|
- rank: 64 |
|
- lora_alpha: 16 |
|
- target_modules: ["q_proj", "k_proj", "v_proj", "dense", "fc1", "fc2"] |
|
|
|
## Usage |
|
|
|
**Training** Here's an example of loading this model and preparing for the LoRA fine-tuning. |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, BitsAndBytesConfig |
|
from peft import PeftModel |
|
|
|
MODEL_ID = "LoftQ/phi-2-4bit-64rank" |
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
torch_dtype=torch.float32, # you may change it with different models |
|
quantization_config=BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float32, # float32 is tested and veryfied |
|
bnb_4bit_use_double_quant=False, |
|
bnb_4bit_quant_type='nf4', |
|
), |
|
) |
|
peft_model = PeftModel.from_pretrained( |
|
base_model, |
|
MODEL_ID, |
|
subfolder="loftq_init", |
|
is_trainable=True, |
|
) |
|
|
|
# Do training with peft_model ... |
|
``` |
|
|
|
## Experiment Results |
|
We have conducted experiments on supervised fine-tuning of [GSM8K](https://huggingface.co/datasets/gsm8k). |
|
|
|
| Model | Bits | Rank | LoRA Initial | GSM8K | |
|
| --------| ---- | ---- | ---------------------- | --------- | |
|
| Phi-2 | 16 | 64 | Full model fine-tuning | 66.8±1.2 | |
|
| Phi-2 | 16 | 64 | Gaussian + 0 | 64.8±0.5 | |
|
| Phi-2 | 4 | 64 | Gaussian + 0 (QLoRA) | 60.2±0.6 | |
|
| Phi-2 | 4 | 64 | LoftQ | 64.1±0.7 | |
|
|
|
|
|
|
|
**Inference** Here is an example code for inference after the model has been fine-tuned on [GSM8K](https://huggingface.co/datasets/gsm8k). |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, BitsAndBytesConfig |
|
from peft import PeftModel |
|
|
|
MODEL_ID = "LoftQ/phi-2-4bit-64rank" |
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
torch_dtype=torch.float32, # you may change it with different models |
|
quantization_config=BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float32, # float32 is tested and veryfied |
|
bnb_4bit_use_double_quant=False, |
|
bnb_4bit_quant_type='nf4', |
|
), |
|
) |
|
peft_model = PeftModel.from_pretrained( |
|
base_model, |
|
MODEL_ID, |
|
subfolder="gsm8k", |
|
is_trainable=True, |
|
) |
|
|
|
# Do inference with peft_model ... |
|
``` |
|
See the full code at our [Github Repo]((https://github.com/yxli2123/LoftQ)) |
|
|
|
|
|
## Citation |
|
|
|
```bibtex |
|
@article{li2023loftq, |
|
title={Loftq: Lora-fine-tuning-aware quantization for large language models}, |
|
author={Li, Yixiao and Yu, Yifan and Liang, Chen and He, Pengcheng and Karampatziakis, Nikos and Chen, Weizhu and Zhao, Tuo}, |
|
journal={arXiv preprint arXiv:2310.08659}, |
|
year={2023} |
|
} |
|
``` |
|
|