File size: 2,246 Bytes
4017d85
 
 
 
 
821a596
 
 
 
 
 
 
adfcbbc
4017d85
 
8f6b22a
0216a6c
 
8f6b22a
0216a6c
 
 
 
4017d85
0216a6c
4017d85
0216a6c
 
 
4017d85
0216a6c
4017d85
0216a6c
4017d85
0216a6c
 
4017d85
0216a6c
 
8f6b22a
4017d85
0216a6c
 
 
4017d85
0216a6c
 
4017d85
0216a6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4017d85
0216a6c
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
tags:
- text-classification
base_model: cross-encoder/nli-roberta-base
widget:
- text: I love AutoTrain
license: mit
language:
- en
metrics:
- accuracy
pipeline_tag: zero-shot-classification
library_name: transformers
---

# LogicSpine/address-base-text-classifier

## Model Description
`LogicSpine/address-base-text-classifier` is a fine-tuned version of the `cross-encoder/nli-roberta-base` model, specifically designed for address classification tasks using zero-shot learning. It allows you to classify text related to addresses and locations without the need for direct training on every possible label.

## Model Usage

### Installation

To use this model, you need to install the `transformers` library:

```bash
pip install transformers torch
```

### Loading the Model

You can easily load and use this model for zero-shot classification using Hugging Face's pipeline API.

```
from transformers import pipeline

# Load the zero-shot classification pipeline with the custom model
classifier = pipeline("zero-shot-classification", 
                      model="LogicSpine/address-base-text-classifier")

# Define your input text and candidate labels
text = "Delhi, India"
candidate_labels = ["Country", "Department", "Laboratory", "College", "District", "Academy"]

# Perform classification
result = classifier(text, candidate_labels)

# Print the classification result
print(result)
```

## Example Output

```
{'labels': ['Country',
            'District',
            'Academy',
            'College',
            'Department',
            'Laboratory'],
 'scores': [0.19237062335014343,
            0.1802321970462799,
            0.16583585739135742,
            0.16354037821292877,
            0.1526614874601364,
            0.14535939693450928],
 'sequence': 'Delhi, India'}
```

## Validation Metrics

**loss:** `0.28241145610809326`
**f1_macro:** `0.8093855588593053`
**f1_micro:** `0.9515418502202643`
**f1_weighted:** `0.949198754683482`
**precision_macro:** `0.8090277777777778`
**precision_micro:** `0.9515418502202643`
**precision_weighted:** `0.9473201174743024`
**recall_macro:** `0.8100845864661653`
**recall_micro:** `0.9515418502202643`
**recall_weighted:** `0.9515418502202643`
**accuracy:** `0.9515418502202643`