Edit model card

image/png

πŸ”¬ Einstein-v4-7B

This model is a full fine-tuned version of mistralai/Mistral-7B-v0.1 on diverse datasets.

This model is finetuned using 7xRTX3090 + 1xRTXA6000 using axolotl.

This model's training was sponsored by sablo.ai.

See axolotl config

axolotl version: 0.4.0

base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: chatml
datasets:
  - path: data/merged_all.json
    ds_type: json
    type: alpaca
    conversation: chatml

  - path: data/capybara_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml

  - path: data/synthia-v1.3_sharegpt_12500.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/cot_alpaca_gpt4_extracted_openhermes_2.5_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml

  - path: data/slimorca_dedup_filtered_95k_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/airoboros_3.2_without_contextual_slimorca_orca_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./Einstein-v4-model

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project: Einstein
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/Einstein-v4-7B

save_safetensors: true

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1.5
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 2 # changed
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 4
debug:

deepspeed: zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "<|im_end|>"
  unk_token: "<unk>"
tokens:
  - "<|im_start|>"

resume_from_checkpoint: Einstein-v4-model/checkpoint-521

πŸ’¬ Prompt Template

You can use this prompt template while using the model:

ChatML

<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>

This prompt template is available as a chat template, which means you can format messages using the tokenizer.apply_chat_template() method:

messages = [
    {"role": "system", "content": "You are helpful AI asistant."},
    {"role": "user", "content": "Hello!"}
]
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
model.generate(**gen_input)

πŸ”„ Quantizationed versions

Quantizationed versions of this model is available.

Exl2 @bartowski:

You can switch up branches in the repo to use the one you want

Branch Bits lm_head bits VRAM (4k) VRAM (16k) VRAM (32k) Description
8_0 8.0 8.0 8.4 GB 9.8 GB 11.8 GB Maximum quality that ExLlamaV2 can produce, near unquantized performance.
6_5 6.5 8.0 7.2 GB 8.6 GB 10.6 GB Very similar to 8.0, good tradeoff of size vs performance, recommended.
5_0 5.0 6.0 6.0 GB 7.4 GB 9.4 GB Slightly lower quality vs 6.5, but usable on 8GB cards.
4_25 4.25 6.0 5.3 GB 6.7 GB 8.7 GB GPTQ equivalent bits per weight, slightly higher quality.
3_5 3.5 6.0 4.7 GB 6.1 GB 8.1 GB Lower quality, only use if you have to.

🎯 Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 66.62
AI2 Reasoning Challenge (25-Shot) 64.68
HellaSwag (10-Shot) 83.75
MMLU (5-Shot) 62.31
TruthfulQA (0-shot) 55.15
Winogrande (5-shot) 76.24
GSM8k (5-shot) 57.62

πŸ€– Additional information about training

This model is full fine-tuned for 1.5 epoch.

Total number of steps was 1562.

Loss graph

image/png


🀝 Acknowledgments

Thanks to sablo.ai for sponsoring this model.

Thanks to all the dataset authors mentioned in the datasets section.

Thanks to axolotl for making the repository I used to make this model.

Thanks to all open source AI community.

Built with Axolotl

If you would like to support me:

β˜• Buy Me a Coffee

Downloads last month
29
GGUF
Model size
7.24B params
Architecture
llama

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .

Model tree for LoneStriker/Einstein-v4-7B-GGUF

Quantized
(168)
this model

Datasets used to train LoneStriker/Einstein-v4-7B-GGUF

Evaluation results