File size: 14,688 Bytes
be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 be25b99 00db9b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
---
license: other
license_name: yi-license
license_link: LICENSE
widget:
- example_title: SUS-Chat
text: hi
output:
text: ' Hello! How can I assist you today?'
pipeline_tag: text-generation
---
# 🐷SUS-Chat: Instruction tuning done right
<p align="left">
<a href="README_CN.md">中文</a>  |  English 
</p>
<br><br>
<div align="center">
<p align="center">
<img src="https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/sustech.svg?sanitize=true" width="200px">
<img src="https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/ccnl.png?sanitize=true" width="200px">
</p>
<div style="display: inline-block;">
<a rel="noopener nofollow" href="https://github.com/SUSTech-IDEA/SUS-Chat/issues">
<img src="https://img.shields.io/github/issues/SUSTech-IDEA/SUS-Chat?logo=github" style="margin: 0 0;">
</a>
</div>
<div style="display: inline-block;">
<a href="https://huggingface.co/SUSTech">
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-SUSTech-blue" style="margin: 0 0;">
</a>
</div>
<div style="display: inline-block;">
<a rel="noopener nofollow" href="https://www.modelscope.cn/organization/sustc/">
<img src="https://img.shields.io/badge/🤖ModelScope-sustc-blue" style="margin: 0 0;">
</a>
</div>
<div style="display: inline-block;">
<a rel="noopener nofollow" href="https://github.com/SUSTech-IDEA/SUS-Chat/blob/main/LICENSE">
<img src="https://img.shields.io/badge/Code_License-Apache_2.0-lightblue" style="margin: 0 0;">
</a>
</div>
<div style="display: inline-block;">
<a rel="noopener nofollow" href="https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt">
<img src="https://img.shields.io/badge/Model_License-Model_Agreement-lightblue" style="margin: 0 0;">
</a>
</div>
<div style="display: inline-block;">
<a rel="noopener nofollow" href="mailto:oss@data.sustech.edu.cn">
<img src="https://img.shields.io/badge/✉️-data@sustech.edu.cn-FFE01B" style="margin: 0 0;">
</a>
</div>
</div>
# News
- 2023-12-06: Try [SUS-Chat-34B
chat-ui](https://huggingface.co/spaces/SUSTech/SUS-Chat-34B).
- 2023-12-05: SUS-Chat-34B is now available on
[ModelScope🤖](https://www.modelscope.cn/models/SUSTC/SUS-Chat-34B/summary)
- 2023-12-05: SUS-Chat-34B is ranked 2nd in [Open LLM
leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
and surpassed all models under 70B.
- 2023-12-01: SUS-Chat-34B is now available on
[HuggingFace🤗](https://huggingface.co/SUSTech/SUS-Chat-34B).
# Introduction
<img src="https://hackmd.io/_uploads/HJlDtzhBa.png" id="fig-sus"
alt="Figure 1: DALL·E 2023-12-01 11.03.28 - An imposing, majestic wild boar combined with elements of a futuristic transformer robot. The boar itself should be intricately blended with these tra" />
**SUS-Chat-34B** is a 34B bilingual Chinese-English dialogue model,
jointly released by the **[Southern University of Science and
Technology](https://huggingface.co/SUSTech)** and
**[IDEA-CCNL](https://huggingface.co/IDEA-CCNL)**. This model is based
on [`01-ai/Yi-34B`](https://huggingface.co/01-ai/Yi-34B) and has been
fine-tuned on millions of high-quality, multilingual instruction data.
While maintaining the strong language capabilities of the base model,
the SUS-Chat-34B model has improved the model’s response to human
instructions through high-quality instruction fine-tuning and excels at
imitating human thought processes through chains of thought. It
introduces inter-instruction attention sharing in long texts, expanding
the window size from 4K to 8K, significantly enhancing the usability of
multi-turn dialogues.
It has surpassed all models of the same size in almost all benchmark
tests and is better suited to meet the practical needs of complex
multilingual tasks. Compared to larger models, SUS-Chat-34B remains
highly competitive and has achieved state-of-the-art performance in our
comprehensive evaluations.
SUS-Chat-34B model has the following highlights:
1. Large-scale complex instruction following data: Trained with 1.4
billion tokens of high-quality complex instruction data, covering
Chinese and English, multi-turn dialogues, mathematics, reasoning,
and various other types of instruction data;
2. Strong performance in general tasks: The SUS-Chat-34B model excels
in numerous mainstream Chinese and English tasks, surpassing other
open-source instruction fine-tuned models of the same parameter
scale. It also competes well against models with larger parameter
scales;
3. Longer context window and excellent multi-turn dialogue
capabilities: Currently, SUS-Chat-34B supports an 8K context window,
and is trained with a large amount of multi-turn instruction and
single-multi-turn mixed data, demonstrating remarkable capabilities
in long-text dialogue information focus and instruction follow-up.
SUS-Chat powerfully demonstrates that through the right instruction
fine-tuning, academic institutions can achieve better performance
without increasing model parameters, using open-source datasets and
models. This bridges the gap between academia and industry in large
language models and opens new possibilities for collaboration between
academic and industrial sectors.
# Performance
To better evaluate the performance of the SUS-Chat-34B model, we
conducted assessments across multiple benchmark tests and have
open-sourced the evaluation framework
[TLEM](https://huggingface.co/spaces/SUSTech/tlem) to facilitate
replication and comparison by other researchers.
In TLEM, we utilized various benchmark tests including MMLU, CMMLU,
C-Eval, BBH, GSM-8K, and MATH, to measure the model’s knowledge and
thinking capabilities. In these metrics, the SUS-Chat-34B model achieved
state-of-the-art performance. Additionally, we incorporated
[lm-eval](https://github.com/EleutherAI/lm-evaluation-harness) to test
SUS-Chat and similar models on winogrande, hellaswag, arc, and
truthful-qa, assessing the model’s common-sense reasoning ability and
susceptibility to illusions.
Overall, the SUS-Chat-34B model significantly outperformed models of
similar scale and achieved the most advanced comprehensive performance.
<img
src="https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/radar.png"
id="fig-bench" alt="Figure 2: Benchmark" />
<div>
<table>
<colgroup>
<col style="width: 50%" />
<col style="width: 50%" />
</colgroup>
<tbody>
<tr class="odd">
<td style="text-align: center;"><div width="50.0%"
data-layout-align="center">
<h2 id="english-understanding">English Understanding</h2>
<table>
<thead>
<tr class="header">
<th style="text-align: right;">Model</th>
<th style="text-align: center;">mmlu (0-shot)</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td style="text-align: right;">GPT-4</td>
<td style="text-align: center;">83</td>
</tr>
<tr class="even">
<td style="text-align: right;">SUS-Chat-34B</td>
<td style="text-align: center;"><u>74.35</u></td>
</tr>
<tr class="odd">
<td style="text-align: right;">Qwen-72b-Chat</td>
<td style="text-align: center;"><strong>74.52</strong></td>
</tr>
<tr class="even">
<td style="text-align: right;">Deepseek-68b-Chat</td>
<td style="text-align: center;">69.43</td>
</tr>
<tr class="odd">
<td style="text-align: right;">OrionStar-Yi-34B-Chat</td>
<td style="text-align: center;">68.51</td>
</tr>
<tr class="even">
<td style="text-align: right;">Yi-34B-Chat</td>
<td style="text-align: center;">66.96</td>
</tr>
</tbody>
</table>
</div></td>
<td style="text-align: center;"><div width="50.0%"
data-layout-align="center">
<h2 id="chinese-capabilities">Chinese Capabilities</h2>
<table>
<colgroup>
<col style="width: 34%" />
<col style="width: 32%" />
<col style="width: 32%" />
</colgroup>
<thead>
<tr class="header">
<th style="text-align: right;">Model</th>
<th style="text-align: center;">cmmlu (0-shot)</th>
<th style="text-align: center;">C-Eval (0-shot)<a href="#fn1"
class="footnote-ref" id="fnref1"
role="doc-noteref"><sup>1</sup></a></th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td style="text-align: right;">GPT-4</td>
<td style="text-align: center;">71</td>
<td style="text-align: center;">69.9</td>
</tr>
<tr class="even">
<td style="text-align: right;">SUS-Chat-34B</td>
<td style="text-align: center;"><strong>78.68</strong></td>
<td style="text-align: center;"><strong>82.42</strong></td>
</tr>
<tr class="odd">
<td style="text-align: right;">Qwen-72b-Chat</td>
<td style="text-align: center;"><u>77.02</u></td>
<td style="text-align: center;"><u>77.22</u></td>
</tr>
<tr class="even">
<td style="text-align: right;">Deepseek-68b-Chat</td>
<td style="text-align: center;">48.51</td>
<td style="text-align: center;">59.7</td>
</tr>
<tr class="odd">
<td style="text-align: right;">OrionStar-Yi-34B-Chat</td>
<td style="text-align: center;">66.88</td>
<td style="text-align: center;">65.13</td>
</tr>
<tr class="even">
<td style="text-align: right;">Yi-34B-Chat</td>
<td style="text-align: center;">55.16</td>
<td style="text-align: center;">77.16</td>
</tr>
</tbody>
</table>
</div></td>
</tr>
</tbody>
</table>
<section id="footnotes" class="footnotes footnotes-end-of-document"
role="doc-endnotes">
<hr />
<ol>
<li id="fn1"><p>C-Eval results are evaluated on the validation
datasets<a href="#fnref1" class="footnote-back"
role="doc-backlink">↩︎</a></p></li>
</ol>
</section>
</div>
## Math & Reasoning
| Model | gsm8k (0-shot) | MATH (0-shot) | BBH (0-shot) |
|----------------------:|:--------------:|:-------------:|:------------:|
| GPT-4 | 91.4 | 45.8 | 86.7 |
| SUS-Chat-34B | **80.06** | 28.7 | 67.62 |
| Qwen-72b-Chat | <u>76.57</u> | **35.9** | **72.63** |
| Deepseek-68b-Chat | 74.45 | <u>29.56</u> | <u>69.73</u> |
| OrionStar-Yi-34B-Chat | 54.36 | 12.8 | 62.88 |
| Yi-34B-Chat | 63.76 | 10.02 | 61.54 |
## More Tasks
| Model | winogrande (5-shot) | arc (25-shot) | hellaswag (10-shot) | TruthfulQA mc1 (0-shot) | TruthfulQA mc2 (0-shot) |
|----------------------:|:-------------------:|:-------------:|:-------------------:|:-----------------------:|:-----------------------:|
| GPT-4 | — | 94.5 | 91.4 | 59.00 | — |
| SUS-Chat-34B | **81.22** | <u>81.54</u> | 83.79 | **40.64** | **57.47** |
| Qwen-72b-Chat | 76.09 | **82.10** | <u>86.06</u> | 39.17 | <u>56.37</u> |
| Deepseek-68b-Chat | <u>80.58</u> | 81.29 | **87.02** | <u>40.02</u> | 50.64 |
| OrionStar-Yi-34B-Chat | 77.27 | 80.19 | 84.54 | 36.47 | 53.24 |
| Yi-34B-Chat | 76.64 | 70.66 | 82.29 | 38.19 | 54.57 |
## Overall
| Model | Average |
|----------------------:|:---------:|
| SUS-Chat-34B | **69.05** |
| Qwen-72b-Chat | 68.41 |
| Deepseek-68b-Chat | 62.91 |
| OrionStar-Yi-34B-Chat | 60.21 |
| Yi-34B-Chat | 59.72 |
To reproduce the results, please start a corresponding vllm server and
refer to
[here](https://sustech-tlem.static.hf.space/index.html#start-evaluating-your-model-in-3-line).
# Usage
SUS-Chat-34B is a standard LLaMA model and should be seamlessly
compatible with the LLaMA ecosystem. We provide the following example to
demonstrate how it can be used for multi-turn dialogues.
Feel free to [open an
issue](https://github.com/SUSTech-IDEA/SUS-Chat/issues) if you have any
questions.
``` python
from transformers import AutoModelForCausalLM, AutoTokenizer # 🤗 Transformers, or
# from modelscope import AutoModelForCausalLM, AutoTokenizer # 🤖 ModelScope
def chat_template(messages):
history = ""
for message in messages:
match message:
case {"role": "user", "content": message}:
history += f"### Human: {message}\n\n### Assistant: "
case {"role": "assistant", "content": message}:
history += message
return history
model_path = "SUSTech/SUS-Chat-34B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, device_map="auto", torch_dtype="auto"
).eval()
messages = [{"role": "user", "content": "hi"}]
input_ids = tokenizer.encode(
chat_template(messages), return_tensors="pt", add_special_tokens=False
).to("cuda")
output_ids = model.generate(input_ids.to("cuda"), max_length=256)
response = tokenizer.decode(
output_ids[0][input_ids.shape[1] :], skip_special_tokens=False
)
messages.append({"role": "assistant", "content": response})
# Second round
messages.append({"role": "user", "content": "What is the capital of China?"})
input_ids = tokenizer.encode(
chat_template(messages), return_tensors="pt", add_special_tokens=False
).to("cuda")
output_ids = model.generate(input_ids.to("cuda"), max_length=256)
response = tokenizer.decode(
output_ids[0][input_ids.shape[1] :], skip_special_tokens=False
)
messages.append({"role": "assistant", "content": response})
```
# Limitations
SUS-Chat has only undergone supervised fine-tuning and has not yet been
trained on human preference learning. As a result, it may produce
unreasonable responses in some situations and exacerbate existing issues
in language models, including hallucinations, non-determinism, and
cumulative errors. To achieve better performance for downstream tasks,
we recommend adjusting the generation configuration parameters
accordingly.
# Disclaimer
During the training process, we used data compliance check algorithms to
ensure the compliance of the training model as much as possible. Due to
the complexity of the data and the diverse use cases of language models,
we cannot guarantee that the model will produce correct and reasonable
outputs in all scenarios. Please be aware that there is still a risk of
the model generating problematic outputs. We will not be responsible for
any risks or issues arising from misuse, misguidance, illegal use, and
related misinformation, as well as data security issues related to the
model.
# License
This model is developed entirely for academic research and free
commercial use, but it must adhere to the
[license](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt)
from [01-ai](https://huggingface.co/01-ai).
|