Overview

This repository hosts a YOLOv8l model trained on the ArxivFormula (https://github.com/microsoft/ArxivFormula) dataset, which focuses on the detection of mathematical expressions in scientific papers.

Training Data:

  • Source: ArxivFormula (https://github.com/microsoft/ArxivFormula)
  • Classes: 6 classes (InlineFormula, DisplayedFormulaLine, FormulaNumber, DisplayedFormulaBlock, Table, Figure) Pages: ~600,000 images of document pages

Model:

Usage

Example Code

from ultralytics import YOLO
import pathlib

# Sample images
img_list = ['sample1.png', 'sample2.png', 'sample3.png']

# Load the document segmentation model
model = YOLO('arxivFormula_YOLOv8l.pt')

# Process the images
results = model(source=img_list, save=True, show_labels=True, show_conf=True, show_boxes=True)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for LouiseBloch/ArxivFormulaYOLOv8

Base model

Ultralytics/YOLOv8
Finetuned
(52)
this model