Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,38 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model:
|
4 |
+
- Ultralytics/YOLOv8
|
5 |
+
pipeline_tag: object-detection
|
6 |
+
---
|
7 |
+
# Overview
|
8 |
+
This repository hosts a YOLOv8l model trained on the ArxivFormula (https://github.com/microsoft/ArxivFormula) dataset, which focuses on the detection of mathematical expressions in scientific papers.
|
9 |
+
|
10 |
+
# Training Data:
|
11 |
+
- Source: ArxivFormula (https://github.com/microsoft/ArxivFormula)
|
12 |
+
- Classes: 6 classes (InlineFormula, DisplayedFormulaLine, FormulaNumber, DisplayedFormulaBlock, Table, Figure)
|
13 |
+
Pages: ~600,000 images of document pages
|
14 |
+
|
15 |
+
# Model:
|
16 |
+
- YOLOv8l (https://github.com/ultralytics/ultralytics)
|
17 |
+
- epochs = 100
|
18 |
+
- imgsz = 640
|
19 |
+
- optimizer = 'AdamW'
|
20 |
+
- lr0 = 0.0001
|
21 |
+
- augment = True
|
22 |
+
|
23 |
+
# Usage
|
24 |
+
## Example Code
|
25 |
+
|
26 |
+
```
|
27 |
+
from ultralytics import YOLO
|
28 |
+
import pathlib
|
29 |
+
|
30 |
+
# Sample images
|
31 |
+
img_list = ['sample1.png', 'sample2.png', 'sample3.png']
|
32 |
+
|
33 |
+
# Load the document segmentation model
|
34 |
+
model = YOLO('arxivFormula_YOLOv8l.pt')
|
35 |
+
|
36 |
+
# Process the images
|
37 |
+
results = model(source=img_list, save=True, show_labels=True, show_conf=True, show_boxes=True)
|
38 |
+
```
|