|
--- |
|
language: |
|
- pt |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lener_br |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
base_model: xlm-roberta-large |
|
model-index: |
|
- name: xlm-roberta-large-finetuned-lener-br |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: lener_br |
|
type: lener_br |
|
config: lener_br |
|
split: train |
|
args: lener_br |
|
metrics: |
|
- type: precision |
|
value: 0.8762313715584744 |
|
name: Precision |
|
- type: recall |
|
value: 0.8966141121736882 |
|
name: Recall |
|
- type: f1 |
|
value: 0.8863055697496168 |
|
name: F1 |
|
- type: accuracy |
|
value: 0.979500052295785 |
|
name: Accuracy |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-large-finetuned-lener-br |
|
|
|
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the lener_br dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
- Precision: 0.8762 |
|
- Recall: 0.8966 |
|
- F1: 0.8863 |
|
- Accuracy: 0.9795 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0785 | 1.0 | 3914 | nan | 0.7119 | 0.8410 | 0.7711 | 0.9658 | |
|
| 0.076 | 2.0 | 7828 | nan | 0.8397 | 0.8679 | 0.8536 | 0.9740 | |
|
| 0.0434 | 3.0 | 11742 | nan | 0.8545 | 0.8666 | 0.8605 | 0.9693 | |
|
| 0.022 | 4.0 | 15656 | nan | 0.8293 | 0.8573 | 0.8431 | 0.9652 | |
|
| 0.0284 | 5.0 | 19570 | nan | 0.8789 | 0.8571 | 0.8678 | 0.9776 | |
|
| 0.029 | 6.0 | 23484 | nan | 0.8521 | 0.8788 | 0.8653 | 0.9771 | |
|
| 0.0227 | 7.0 | 27398 | nan | 0.7648 | 0.8873 | 0.8215 | 0.9686 | |
|
| 0.0219 | 8.0 | 31312 | nan | 0.8609 | 0.9026 | 0.8813 | 0.9780 | |
|
| 0.0121 | 9.0 | 35226 | nan | 0.8746 | 0.8979 | 0.8861 | 0.9812 | |
|
| 0.0087 | 10.0 | 39140 | nan | 0.8829 | 0.8827 | 0.8828 | 0.9808 | |
|
| 0.0081 | 11.0 | 43054 | nan | 0.8740 | 0.8749 | 0.8745 | 0.9765 | |
|
| 0.0058 | 12.0 | 46968 | nan | 0.8838 | 0.8842 | 0.8840 | 0.9788 | |
|
| 0.0044 | 13.0 | 50882 | nan | 0.869 | 0.8984 | 0.8835 | 0.9788 | |
|
| 0.002 | 14.0 | 54796 | nan | 0.8762 | 0.8966 | 0.8863 | 0.9795 | |
|
| 0.0017 | 15.0 | 58710 | nan | 0.8729 | 0.8982 | 0.8854 | 0.9791 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.23.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.1 |
|
|