You Only Sample Once (YOSO)

overview

The YOSO was proposed in "You Only Sample Once: Taming One-Step Text-To-Image Synthesis by Self-Cooperative Diffusion GANs" by Yihong Luo, Xiaolong Chen, Xinghua Qu, Jing Tang.

Official Repository of this paper: YOSO.

This model is fine-tuning from PixArt-XL-2-512x512, enabling one-step inference to perform text-to-image generation.

We wanna highlight that the YOSO-PixArt was originally trained on 512 resolution. However, we found that we can construct a YOSO that enables generating samples with 1024 resolution by merging with PixArt-XL-2-1024-MS (Section 6.3.1 in the paper). The impressive performance indicates the robust generalization ability of our YOSO.

usage

import torch
from diffusers import PixArtAlphaPipeline, LCMScheduler, Transformer2DModel

transformer = Transformer2DModel.from_pretrained(
    "Luo-Yihong/yoso_pixart1024", torch_dtype=torch.float16).to('cuda')

pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-512x512", 
                                           transformer=transformer,
                                           torch_dtype=torch.float16, use_safetensors=True)

pipe = pipe.to('cuda')
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.scheduler.config.prediction_type = "v_prediction"
generator = torch.manual_seed(318)
imgs = pipe(prompt="Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, volumetric lighting, spectacular, ambient lights, light pollution, cinematic atmosphere, art nouveau style, illustration art artwork by SenseiJaye, intricate detail.",
                    num_inference_steps=1, 
                    num_images_per_prompt = 1,
                    generator = generator,
                    guidance_scale=1.,
                   )[0]
imgs[0]

Ship

Bibtex

@misc{luo2024sample,
      title={You Only Sample Once: Taming One-Step Text-to-Image Synthesis by Self-Cooperative Diffusion GANs}, 
      author={Yihong Luo and Xiaolong Chen and Xinghua Qu and Jing Tang},
      year={2024},
      eprint={2403.12931},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Downloads last month
43
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.