M2LabOrg's picture
End of training
6001ca8 verified
metadata
language:
  - pt
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - M2LabOrg/jwlang
metrics:
  - wer
model-index:
  - name: Whisper medium pt jwlang - Michel Mesquita
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: jwlang 1.0
          type: M2LabOrg/jwlang
          args: 'config: pt, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 18.727050183598532

Whisper medium pt jwlang - Michel Mesquita

This model is a fine-tuned version of openai/whisper-medium on the jwlang 1.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6361
  • Wer: 18.7271

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0038 14.0845 1000 0.5291 20.3182
0.0001 28.1690 2000 0.6034 18.9718
0.0 42.2535 3000 0.6277 19.0942
0.0 56.3380 4000 0.6361 18.7271

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1