Configuration Parsing
Warning:
In config.json: "architectures" must be an array
Usage
Get the latest codebase from Github
git clone https://github.com/X-PLUG/mPLUG-Owl.git
Model initialization
from transformers import AutoTokenizer
from mplug_owl.modeling_mplug_owl import MplugOwlForConditionalGeneration
from mplug_owl.processing_mplug_owl import MplugOwlImageProcessor, MplugOwlProcessor
pretrained_ckpt = 'MAGAer13/mplug-owl-bloomz-7b-multilingual'
model = MplugOwlForConditionalGeneration.from_pretrained(
pretrained_ckpt,
torch_dtype=torch.bfloat16,
)
image_processor = MplugOwlImageProcessor.from_pretrained(pretrained_ckpt)
tokenizer = AutoTokenizer.from_pretrained(pretrained_ckpt)
processor = MplugOwlProcessor(image_processor, tokenizer)
Model inference
Prepare model inputs.
# We use a human/AI template to organize the context as a multi-turn conversation.
# <image> denotes an image placeholder.
prompts = [
'''The following is a conversation between a curious human and AI assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: <image>
Human: Explain why this meme is funny.
AI: ''']
# The image paths should be placed in the image_list and kept in the same order as in the prompts.
# We support urls, local file paths, and base64 string. You can customise the pre-processing of images by modifying the mplug_owl.modeling_mplug_owl.ImageProcessor
image_list = ['https://xxx.com/image.jpg']
Get response.
# generate kwargs (the same in transformers) can be passed in the do_generate()
generate_kwargs = {
'do_sample': True,
'top_k': 5,
'max_length': 512
}
from PIL import Image
images = [Image.open(_) for _ in image_list]
inputs = processor(text=prompts, images=images, return_tensors='pt')
inputs = {k: v.bfloat16() if v.dtype == torch.float else v for k, v in inputs.items()}
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
res = model.generate(**inputs, **generate_kwargs)
sentence = tokenizer.decode(res.tolist()[0], skip_special_tokens=True)
print(sentence)
- Downloads last month
- 104
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.