Model Card for Model ID

Training dataset

Basic usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = 'MDDDDR/Llama-3.2-1B-Instruct-FFT-ko-jp'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,
                                             device_map="cuda:0",
                                             torch_dtype=torch.bfloat16)

# Jp to Ko
# instruction = 'ํ•œ๊ตญ์–ด๋กœ ๋ฐ”๊ฟ” ์ฃผ์‹œ๊ฒ ์–ด์š”?'
# input_ = 'ICT็”ฃๆฅญ็”Ÿ็”ฃ้กใŒ2009ๅนด340ๅ…†9000ๅ„„ใ‚ฆใ‚ฉใƒณใ‹ใ‚‰ๆ˜จๅนด497ๅ…†3000ๅ„„ใ‚ฆใ‚ฉใƒณใ€SW็”ฃๆฅญ็”Ÿ็”ฃ้กใŒ30ๅ…†6000ๅ„„ใ‚ฆใ‚ฉใƒณใ‹ใ‚‰55ๅ…†6000ๅ„„ใ‚ฆใ‚ฉใƒณใซๆˆ้•ทใ™ใ‚‹ใฎใซ็›ดๆŽฅใƒป้–“ๆŽฅ็š„ใซๅฏ„ไธŽใ—ใŸใจ่ฉ•ไพกใ•ใ‚Œใ‚‹ใ€‚'
# model answer : ICT ์‚ฐ์—… ์ƒ์‚ฐ์•ก์ด 2009๋…„ 340์กฐ 9,000์–ต์›์—์„œ ์ž‘๋…„ 497์กฐ 3,000์–ต์›, SW์‚ฐ์—… ์ƒ์‚ฐ์•ก์ด 30์กฐ 6,000์–ต์›์—์„œ 55์กฐ 6,000์–ต์›์œผ๋กœ ์„ฑ์žฅํ•˜๋Š” ๋ฐ ์ง์ ‘ยท๊ฐ„์ ‘์ ์œผ๋กœ ๊ธฐ์—ฌํ•œ ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋œ๋‹ค.
# DeepL : ICT ์‚ฐ์—… ์ƒ์‚ฐ์•ก์ด 2009๋…„ 340์กฐ9000์–ต์›์—์„œ ์ง€๋‚œํ•ด 497์กฐ3000์–ต์›, SW ์‚ฐ์—… ์ƒ์‚ฐ์•ก์ด 30์กฐ6000์–ต์›์—์„œ 55์กฐ6000์–ต์›์œผ๋กœ ์„ฑ์žฅํ•˜๋Š”๋ฐ ์ง๊ฐ„์ ‘์ ์œผ๋กœ ๊ธฐ์—ฌํ•œ ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋ฐ›๊ณ  ์žˆ๋‹ค.

# Ko to Jp
instruction = '์ด ๋ฌธ์žฅ์„ ์ผ๋ณธ์–ด๋กœ ์“ฐ๋ฉด ์–ด๋–ป๊ฒŒ ๋˜๋Š”์ง€ ์•Œ๋ ค์ฃผ์„ธ์š”.'
input_ = 'ํ•˜์ง€๋งŒ ์ฆ์ƒ์ด ๋‚˜์•„์ง€์ง€ ์•Š์ž ์ง€๋‚œ 13์ผ ์ฝ”๋กœ๋‚˜19 ์ง„๋‹จ ๊ฒ€์‚ฌ๋ฅผ ๋ฐ›์•˜๊ณ  ๋’ค๋Šฆ๊ฒŒ ๊ฐ์—ผ ์‚ฌ์‹ค์ด ๋“œ๋Ÿฌ๋‚ฌ๋‹ค.'

messages = [
  {
    "role":"user",
    "content":"์•„๋ž˜๋Š” ๋ฌธ์ œ๋ฅผ ์„ค๋ช…ํ•˜๋Š” ์ง€์‹œ์‚ฌํ•ญ๊ณผ, ๊ตฌ์ฒด์ ์ธ ๋‹ต๋ณ€์„ ๋ฐฉ์‹์„ ์š”๊ตฌํ•˜๋Š” ์ž…๋ ฅ์ด ํ•จ๊ป˜ ์žˆ๋Š” ๋ฌธ์žฅ์ž…๋‹ˆ๋‹ค. ์ด ์š”์ฒญ์— ๋Œ€ํ•ด ์ ์ ˆํ•˜๊ฒŒ ๋‹ต๋ณ€ํ•ด์ฃผ์„ธ์š”.\n###์ž…๋ ฅ:{input}\n###์ง€์‹œ์‚ฌํ•ญ:{instruction}".format(instruction=instruction, input=input_)
  }
]
with torch.no_grad():
  prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
  inputs = tokenizer(prompt, return_tensors="pt", padding=False).to('cuda')
  outputs = model.generate(**inputs, 
                           use_cache=False, 
                           max_length=256, 
                           top_p=0.9,
                           temperature=0.7, 
                           repetition_penalty=1.0,
                           pad_token_id=tokenizer.pad_token_id)

output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
final_output = output_text.split('๋‹ต๋ณ€:')[-1]
print(final_output)
# ใ—ใ‹ใ—ใ€็—‡็ŠถใŒๆ‚ชใใชใ‹ใฃใŸใŒใ€13ๆ—ฅใซๆ–ฐๅž‹ใ‚ณใƒญใƒŠใ‚ฆใ‚คใƒซใ‚นๆ„ŸๆŸ“็—‡ใฎ่จบๆ–ญๆคœๆŸปใ‚’ๅ—ใ‘ใฆ้…ใ‚Œใฆๆ„ŸๆŸ“ใฎไบ‹ๅฎŸใŒๆ˜Žใ‚‰ใ‹ใซใชใฃใŸใ€‚

Model evaluation

model_name BLEU(Koโ†’Jp) BLEU(Jpโ†’Ko) BLEU(total) pred_label_sim
MDDDDR/Llama-3.2-1B-Instruct-FFT-ko-jp 0.6959 0.7144 0.7052 0.9166
meta-llama/Llama-3.2-1B-Instruct 0.0046 0.0531 0.0311 0.4139
meta-llama/Llama-3.2-3B-Instruct 0.0188 0.1170 0.0679 0.5484
google/gemma-2-2b-it 0.0326 0.0962 0.0644 0.4856
Qwen/Qwen2.5-3B-Instruct 0.0860 0.1608 0.1319 0.5600
  • ํ‰๊ฐ€๋Š” ๊ฐ๊ฐ 500๊ฑด์”ฉ ํ•˜์—ฌ ์ด 1000๊ฑด์˜ ๋ฐ์ดํ„ฐ ์‚ฌ์šฉ
  • pred_label_sim์˜ ๊ฒฝ์šฐ ๋†’์„์ˆ˜๋ก ์˜ˆ์ธก ๋ฌธ์žฅ(model_answer)๊ณผ ์ •๋‹ต ๋ฌธ์žฅ(label)์˜ ์œ ์‚ฌ๋„๊ฐ€ ๋†’๋‹ค๊ณ  ์ธก์ •๋˜๋Š” ๊ฒƒ

Hardware

  • A100 40GB x 1
  • Training Time : 1 hour 40 minutes
Downloads last month
5
Safetensors
Model size
1.24B params
Tensor type
BF16
ยท
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for MDDDDR/Llama-3.2-1B-Instruct-FFT-ko-jp

Finetuned
(307)
this model

Collection including MDDDDR/Llama-3.2-1B-Instruct-FFT-ko-jp