MHGanainy's picture
Model save
544222d verified
|
raw
history blame
3.33 kB
metadata
library_name: transformers
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: roberta-base-downstream-build_rr
    results: []

roberta-base-downstream-build_rr

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8610
  • Precision-macro: 0.6015
  • Recall-macro: 0.5642
  • Macro-f1: 0.5742
  • Precision-micro: 0.7871
  • Recall-micro: 0.7871
  • Micro-f1: 0.7871
  • Accuracy: 0.7871

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 1
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision-macro Recall-macro Macro-f1 Precision-micro Recall-micro Micro-f1 Accuracy
No log 1.0 124 0.9703 0.5485 0.3447 0.3566 0.7155 0.7155 0.7155 0.7155
No log 2.0 248 0.8005 0.5181 0.5222 0.5080 0.7353 0.7353 0.7353 0.7353
No log 3.0 372 0.8156 0.5626 0.5322 0.5288 0.7454 0.7454 0.7454 0.7454
No log 4.0 496 0.7056 0.5881 0.5197 0.5180 0.7704 0.7704 0.7704 0.7704
1.0549 5.0 620 0.7526 0.5878 0.5906 0.5775 0.7642 0.7642 0.7642 0.7642
1.0549 6.0 744 0.7094 0.6336 0.5395 0.5649 0.7812 0.7812 0.7812 0.7812
1.0549 7.0 868 0.7391 0.6475 0.5339 0.5535 0.7808 0.7808 0.7808 0.7808
1.0549 8.0 992 0.7354 0.6169 0.5756 0.5881 0.7930 0.7930 0.7930 0.7930
0.545 9.0 1116 0.8143 0.5951 0.5963 0.5928 0.7805 0.7805 0.7805 0.7805
0.545 10.0 1240 0.8352 0.6029 0.5915 0.5918 0.7794 0.7794 0.7794 0.7794
0.545 11.0 1364 0.8610 0.6015 0.5642 0.5742 0.7871 0.7871 0.7871 0.7871

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1