AraBERT_AraiEval24_token_classification_Ara_filt_multi
This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4861
- Precision: 0.0737
- Recall: 0.0573
- F1: 0.0645
- Accuracy: 0.6977
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.2381 | 1.0 | 931 | 1.2734 | 0.0 | 0.0 | 0.0 | 0.7303 |
0.9984 | 2.0 | 1862 | 1.2484 | 0.0229 | 0.0037 | 0.0064 | 0.7274 |
0.8737 | 3.0 | 2793 | 1.2458 | 0.0465 | 0.0174 | 0.0253 | 0.7133 |
0.7349 | 4.0 | 3724 | 1.2703 | 0.0644 | 0.0353 | 0.0456 | 0.7060 |
0.6821 | 5.0 | 4655 | 1.3415 | 0.0731 | 0.0363 | 0.0485 | 0.7170 |
0.6166 | 6.0 | 5586 | 1.3396 | 0.0663 | 0.0527 | 0.0587 | 0.7015 |
0.5702 | 7.0 | 6517 | 1.3938 | 0.0739 | 0.0468 | 0.0573 | 0.7076 |
0.491 | 8.0 | 7448 | 1.4432 | 0.0741 | 0.0511 | 0.0605 | 0.7021 |
0.4641 | 9.0 | 8379 | 1.4936 | 0.0759 | 0.0483 | 0.0591 | 0.7094 |
0.4441 | 10.0 | 9310 | 1.4861 | 0.0737 | 0.0573 | 0.0645 | 0.6977 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.13.3
- Downloads last month
- 0