Edit model card

AraBERT_token_classification_AraEval24_rand_trun_multi

This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1695
  • Precision: 0.0439
  • Recall: 0.1002
  • F1: 0.0610
  • Accuracy: 0.2298

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.5791 1.0 1534 2.2680 0.0218 0.0586 0.0318 0.2410
1.2834 2.0 3068 2.4695 0.0262 0.0702 0.0382 0.2455
1.0083 3.0 4602 2.5744 0.0326 0.0706 0.0446 0.2740
0.7635 4.0 6136 3.1634 0.0352 0.0790 0.0487 0.2240
0.5815 5.0 7670 3.5014 0.0379 0.0843 0.0523 0.2017
0.4531 6.0 9204 3.7500 0.0353 0.0794 0.0488 0.2038
0.3676 7.0 10738 3.8002 0.0395 0.0876 0.0545 0.2302
0.3135 8.0 12272 4.0371 0.0382 0.0801 0.0517 0.2253
0.2621 9.0 13806 4.1992 0.0449 0.1084 0.0635 0.2229
0.2169 10.0 15340 4.1695 0.0439 0.1002 0.0610 0.2298

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.13.3
Downloads last month
0
Inference API
Unable to determine this model's library. Check the docs .