AraBERT_token_classification_AraEval24_rand_trun_multi
This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 4.1695
- Precision: 0.0439
- Recall: 0.1002
- F1: 0.0610
- Accuracy: 0.2298
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.5791 | 1.0 | 1534 | 2.2680 | 0.0218 | 0.0586 | 0.0318 | 0.2410 |
1.2834 | 2.0 | 3068 | 2.4695 | 0.0262 | 0.0702 | 0.0382 | 0.2455 |
1.0083 | 3.0 | 4602 | 2.5744 | 0.0326 | 0.0706 | 0.0446 | 0.2740 |
0.7635 | 4.0 | 6136 | 3.1634 | 0.0352 | 0.0790 | 0.0487 | 0.2240 |
0.5815 | 5.0 | 7670 | 3.5014 | 0.0379 | 0.0843 | 0.0523 | 0.2017 |
0.4531 | 6.0 | 9204 | 3.7500 | 0.0353 | 0.0794 | 0.0488 | 0.2038 |
0.3676 | 7.0 | 10738 | 3.8002 | 0.0395 | 0.0876 | 0.0545 | 0.2302 |
0.3135 | 8.0 | 12272 | 4.0371 | 0.0382 | 0.0801 | 0.0517 | 0.2253 |
0.2621 | 9.0 | 13806 | 4.1992 | 0.0449 | 0.1084 | 0.0635 | 0.2229 |
0.2169 | 10.0 | 15340 | 4.1695 | 0.0439 | 0.1002 | 0.0610 | 0.2298 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.13.3
- Downloads last month
- 0