BERT_token_classification_14PTC_basic_fixed
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2901
- Precision: 0.0593
- Recall: 0.0755
- F1: 0.0664
- Accuracy: 0.7149
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.1822 | 1.0 | 664 | 0.9721 | 0.1063 | 0.0329 | 0.0502 | 0.7774 |
0.9937 | 2.0 | 1328 | 0.9852 | 0.0607 | 0.0622 | 0.0614 | 0.7508 |
0.8517 | 3.0 | 1992 | 0.9996 | 0.0572 | 0.0577 | 0.0574 | 0.7376 |
0.5704 | 4.0 | 2656 | 1.0643 | 0.0545 | 0.0657 | 0.0596 | 0.7296 |
0.514 | 5.0 | 3320 | 1.1014 | 0.0555 | 0.0648 | 0.0598 | 0.7318 |
0.4757 | 6.0 | 3984 | 1.1413 | 0.0565 | 0.0568 | 0.0567 | 0.7356 |
0.3538 | 7.0 | 4648 | 1.2095 | 0.0598 | 0.0764 | 0.0671 | 0.7171 |
0.3326 | 8.0 | 5312 | 1.2463 | 0.0551 | 0.0728 | 0.0627 | 0.7081 |
0.3158 | 9.0 | 5976 | 1.2557 | 0.0636 | 0.0764 | 0.0694 | 0.7258 |
0.2676 | 10.0 | 6640 | 1.2901 | 0.0593 | 0.0755 | 0.0664 | 0.7149 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.13.3
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.