RoBERTa_token_classification_14_techs_1.6k_aug_fixed
This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7038
- Precision: 0.0840
- Recall: 0.0897
- F1: 0.0867
- Accuracy: 0.7162
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3686 | 1.0 | 3062 | 1.1559 | 0.0603 | 0.0444 | 0.0512 | 0.7139 |
0.2649 | 2.0 | 6124 | 1.1922 | 0.0722 | 0.0568 | 0.0636 | 0.7311 |
0.19 | 3.0 | 9186 | 1.3835 | 0.0650 | 0.0595 | 0.0622 | 0.7139 |
0.1523 | 4.0 | 12248 | 1.4861 | 0.0694 | 0.0684 | 0.0689 | 0.6950 |
0.1325 | 5.0 | 15310 | 1.3685 | 0.0851 | 0.0799 | 0.0824 | 0.7245 |
0.1171 | 6.0 | 18372 | 1.4717 | 0.0788 | 0.0861 | 0.0823 | 0.7092 |
0.1158 | 7.0 | 21434 | 1.5654 | 0.0712 | 0.0684 | 0.0698 | 0.7210 |
0.0958 | 8.0 | 24496 | 1.5706 | 0.0766 | 0.0844 | 0.0803 | 0.7157 |
0.0861 | 9.0 | 27558 | 1.6950 | 0.0923 | 0.0924 | 0.0923 | 0.7155 |
0.0864 | 10.0 | 30620 | 1.7038 | 0.0840 | 0.0897 | 0.0867 | 0.7162 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.13.3
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.