|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: RoBERTa_token_classification_AraiEval24_Eng_multi_n_dupl |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# RoBERTa_token_classification_AraiEval24_Eng_multi_n_dupl |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6921 |
|
- Precision: 0.1617 |
|
- Recall: 0.0919 |
|
- F1: 0.1172 |
|
- Accuracy: 0.6855 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 1.3253 | 1.0 | 617 | 1.3214 | 0.1630 | 0.0115 | 0.0216 | 0.7059 | |
|
| 1.1069 | 2.0 | 1234 | 1.2762 | 0.1354 | 0.0299 | 0.0490 | 0.7012 | |
|
| 0.9809 | 3.0 | 1851 | 1.3347 | 0.1268 | 0.0614 | 0.0827 | 0.6621 | |
|
| 0.8247 | 4.0 | 2468 | 1.4661 | 0.1354 | 0.0572 | 0.0804 | 0.6672 | |
|
| 0.5789 | 5.0 | 3085 | 1.4868 | 0.1434 | 0.0593 | 0.0839 | 0.6698 | |
|
| 0.4944 | 6.0 | 3702 | 1.5318 | 0.1525 | 0.0829 | 0.1074 | 0.6845 | |
|
| 0.445 | 7.0 | 4319 | 1.6190 | 0.1608 | 0.0808 | 0.1076 | 0.6882 | |
|
| 0.4139 | 8.0 | 4936 | 1.6784 | 0.1736 | 0.0945 | 0.1224 | 0.6906 | |
|
| 0.3402 | 9.0 | 5553 | 1.6696 | 0.1599 | 0.0934 | 0.1180 | 0.6813 | |
|
| 0.3125 | 10.0 | 6170 | 1.6921 | 0.1617 | 0.0919 | 0.1172 | 0.6855 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.13.3 |
|
|