|
--- |
|
language: |
|
- en |
|
pipeline_tag: text2text-generation |
|
metrics: |
|
- f1 |
|
tags: |
|
- english |
|
- sql |
|
--- |
|
|
|
This is a fine-tuned version of LLAMA2 trained (7b) on spider, sql-create-context. |
|
|
|
To initialize the model: |
|
|
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=use_4bit, |
|
bnb_4bit_quant_type=bnb_4bit_quant_type, |
|
bnb_4bit_compute_dtype=compute_dtype, |
|
bnb_4bit_use_double_quant=use_nested_quant, |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
quantization_config=bnb_config, |
|
device_map=device_map, |
|
trust_remote_code=True |
|
) |
|
|
|
|
|
Use the tokenizer: |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.padding_side = "right" |
|
|
|
To get the prompt: |
|
|
|
dataset = dataset.map( |
|
lambda example: { |
|
"input": "### Instruction: \nYou are a powerful text-to-SQL model. \ |
|
Your job is to answer questions about a database. You are given \ |
|
a question and context regarding one or more tables. \n\nYou must \ |
|
output the SQL query that answers the question. \ |
|
\n\n \ |
|
### Dialect:\n\nsqlite\n\n \ |
|
### question:\n\n"+ example["question"]+" \ |
|
\n\n### Context:\n\n"+example["context"], |
|
"answer": example["answer"] |
|
} |
|
) |
|
|
|
|
|
To generate text using the model: |
|
|
|
output = model.generate(input["input_ids"]) |