Edit model card

lilt-en-test

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the test dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Answer: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3}
  • Header: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
  • Question: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2}
  • Overall Precision: 1.0
  • Overall Recall: 1.0
  • Overall F1: 1.0
  • Overall Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0704 200.0 200 0.0001 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} 1.0 1.0 1.0 1.0
0.0001 400.0 400 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} 1.0 1.0 1.0 1.0
0.0001 600.0 600 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} 1.0 1.0 1.0 1.0
0.0001 800.0 800 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} 1.0 1.0 1.0 1.0
0.0 1000.0 1000 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} 1.0 1.0 1.0 1.0
0.0 1200.0 1200 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} 1.0 1.0 1.0 1.0
0.0 1400.0 1400 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} 1.0 1.0 1.0 1.0
0.0 1600.0 1600 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} 1.0 1.0 1.0 1.0
0.0 1800.0 1800 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} 1.0 1.0 1.0 1.0
0.0 2000.0 2000 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} 1.0 1.0 1.0 1.0
0.0 2200.0 2200 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} 1.0 1.0 1.0 1.0
0.0 2400.0 2400 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MSAMTB/lilt-en-test

Finetuned
(44)
this model