metadata
library_name: transformers
pipeline_tag: text-generation
language:
- multilingual
tags:
- generation
- question answering
- instruction tuning
datasets:
- MBZUAI/Bactrian-X
license: cc-by-nc-4.0
Model Description
This HF repository hosts instruction fine-tuned multilingual BLOOM model using the parallel instruction dataset called Bactrain-X in 52 languages. We progressively add a language during instruction fine-tuning at each time, and train 52 models in total. Then, we evaluate those models in three multilingual benchmarks.
Please refer to our paper for more details.
- Base model: BLOOM 7B1
- Instruction languages: English, Chinese, Afrikaans, Arabic, Azerbaijani, Bengali, Czech, German, Spanish, Estonian, Farsi, Finnish, French, Galician, Gujarati, Hebrew, Hindi, Croatian, Indonesian, Italian, Japanese, Georgian, Kazakh, Khmer
- Instruction language codes: en, zh, af, ar, az, bn, cs, de, es, et, fa, fi, fr, gl, gu, he, hi, hr, id, it, ja, ka, kk, km
- Training method: full-parameter fine-tuning.
Usage
The model checkpoint should be loaded using transformers
library.
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("MaLA-LM/lucky52-bloom-7b1-no-24")
model = AutoModelForCausalLM.from_pretrained("MaLA-LM/lucky52-bloom-7b1-no-24")
Citation
@misc{lucky52,
title = "Lucky 52: How Many Languages Are Needed to Instruction Fine-Tune Large Language Models?",
author = "Shaoxiong Ji and Pinzhen Chen",
year = "2024",
eprint = "2404.04850",
archiveprefix = "arXiv",
primaryclass = "cs.CL"
}