|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import pytest |
|
|
|
from llamafactory.train.test_utils import compare_model, load_infer_model, load_reference_model, load_train_model |
|
|
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") |
|
|
|
TINY_LLAMA_PISSA = os.environ.get("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-pissa") |
|
|
|
TRAIN_ARGS = { |
|
"model_name_or_path": TINY_LLAMA, |
|
"stage": "sft", |
|
"do_train": True, |
|
"finetuning_type": "lora", |
|
"pissa_init": True, |
|
"pissa_iter": -1, |
|
"dataset": "llamafactory/tiny-supervised-dataset", |
|
"dataset_dir": "ONLINE", |
|
"template": "llama3", |
|
"cutoff_len": 1024, |
|
"overwrite_cache": True, |
|
"output_dir": "dummy_dir", |
|
"overwrite_output_dir": True, |
|
"fp16": True, |
|
} |
|
|
|
INFER_ARGS = { |
|
"model_name_or_path": TINY_LLAMA_PISSA, |
|
"adapter_name_or_path": TINY_LLAMA_PISSA, |
|
"adapter_folder": "pissa_init", |
|
"finetuning_type": "lora", |
|
"template": "llama3", |
|
"infer_dtype": "float16", |
|
} |
|
|
|
OS_NAME = os.environ.get("OS_NAME", "") |
|
|
|
|
|
@pytest.mark.xfail(OS_NAME.startswith("windows"), reason="Known connection error on Windows.") |
|
def test_pissa_train(): |
|
model = load_train_model(**TRAIN_ARGS) |
|
ref_model = load_reference_model(TINY_LLAMA_PISSA, TINY_LLAMA_PISSA, use_pissa=True, is_trainable=True) |
|
compare_model(model, ref_model) |
|
|
|
|
|
@pytest.mark.xfail(OS_NAME.startswith("windows"), reason="Known connection error on Windows.") |
|
def test_pissa_inference(): |
|
model = load_infer_model(**INFER_ARGS) |
|
ref_model = load_reference_model(TINY_LLAMA_PISSA, TINY_LLAMA_PISSA, use_pissa=True, is_trainable=False) |
|
ref_model = ref_model.merge_and_unload() |
|
compare_model(model, ref_model) |
|
|