whisper-medium-fa / README.md
Mahdi abbasi nourabadi
Model save
e5db7ba verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: whisper-medium-fa
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: fa
          split: None
          args: fa
        metrics:
          - name: Wer
            type: wer
            value: 40.872328527979704

whisper-medium-fa

This model is a fine-tuned version of openai/whisper-medium on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4233
  • Wer: 40.8723

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer
0.3796 0.0811 200 0.5452 47.2661
0.3085 0.1622 400 0.4883 44.2043
0.2575 0.2433 600 0.4480 43.2045
0.2283 0.3244 800 0.4262 40.0376
0.246 0.4055 1000 0.4233 40.8723

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1