metadata
base_model: unsloth/meta-llama-3.1-8b-bnb-4bit
library_name: peft
datasets:
- Yasbok/Alpaca_arabic_instruct
language:
- ar
pipeline_tag: text-generation
tags:
- finance
Meta_LLama3_Arabic
Meta_LLama3_Arabic is a fine-tuned version of Meta's LLaMa model, specialized for Arabic language tasks. This model has been designed for a variety of NLP tasks including text generation,and language comprehension in Arabic.
Model Details
- Model Name: Meta_LLama3_Arabic
- Base Model: LLaMa
- Languages: Arabic
- Tasks: Text Generation,Language Understanding
- Quantization: [Specify if it’s quantized, e.g., 4-bit quantization with
bitsandbytes
, or float32]
Installation
To use this model, you need the unsloth
andtransformers
library from Hugging Face. You can install it as follows:
! pip install transformers unsloth
how to use :
alpaca_prompt = """فيما يلي تعليمات تصف مهمة، إلى جانب مدخل يوفر سياقاً إضافياً. اكتب استجابة تُكمل الطلب بشكل مناسب.
### التعليمات:
{}
### المدخل:
{}
### الاستجابة:
{}"""
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "MahmoudIbrahim/Meta_LLama3_Arabic", # YOUR MODEL YOU USED FOR TRAINING
max_seq_length = 2048,
dtype = None,
load_in_4bit = True,
)
#FastLanguageModel.for_inference(model) # Enable native 2x faster inference
# alpaca_prompt = Copied from above
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
alpaca_prompt.format(
" ماذا تعرف عن الحضاره المصريه ", # instruction
" القديمة",
"",# output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens =150)