Marxulia's picture
End of training
9eb8eff verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emotion_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.55

emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3694
  • Accuracy: 0.55

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 1.9385 0.35
No log 2.0 80 1.6433 0.3875
No log 3.0 120 1.4689 0.5375
No log 4.0 160 1.3533 0.55
No log 5.0 200 1.3162 0.5813
No log 6.0 240 1.3131 0.5437
No log 7.0 280 1.2160 0.6
No log 8.0 320 1.2660 0.5437
No log 9.0 360 1.2594 0.55
No log 10.0 400 1.1873 0.5687
No log 11.0 440 1.1169 0.5875
No log 12.0 480 1.2015 0.5687
1.125 13.0 520 1.2653 0.5375
1.125 14.0 560 1.2801 0.5563
1.125 15.0 600 1.2304 0.5563
1.125 16.0 640 1.2341 0.5437
1.125 17.0 680 1.2981 0.5312
1.125 18.0 720 1.3277 0.5687
1.125 19.0 760 1.2174 0.5875
1.125 20.0 800 1.1810 0.6
1.125 21.0 840 1.2280 0.5687
1.125 22.0 880 1.3576 0.525
1.125 23.0 920 1.3897 0.5375
1.125 24.0 960 1.3216 0.5625
0.3612 25.0 1000 1.3033 0.6062
0.3612 26.0 1040 1.3501 0.5625
0.3612 27.0 1080 1.2310 0.575
0.3612 28.0 1120 1.2495 0.6062
0.3612 29.0 1160 1.2974 0.5875
0.3612 30.0 1200 1.2985 0.5813

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1