Kabardian-ASR-kaggle
This model is a fine-tuned version of facebook/mms-1b-all on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1748
- Wer: 0.3268
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.6132 | 0.3040 | 200 | 0.4195 | 0.6846 |
0.4931 | 0.6079 | 400 | 0.3299 | 0.5413 |
0.3934 | 0.9119 | 600 | 0.2873 | 0.5070 |
0.3771 | 1.2158 | 800 | 0.2497 | 0.4569 |
0.3445 | 1.5198 | 1000 | 0.2516 | 0.4304 |
0.3724 | 1.8237 | 1200 | 0.2439 | 0.4079 |
0.3265 | 2.1277 | 1400 | 0.2083 | 0.4065 |
0.2983 | 2.4316 | 1600 | 0.2082 | 0.3693 |
0.3222 | 2.7356 | 1800 | 0.2073 | 0.3688 |
0.3461 | 3.0395 | 2000 | 0.1854 | 0.3438 |
0.2745 | 3.3435 | 2200 | 0.1813 | 0.3329 |
0.2867 | 3.6474 | 2400 | 0.1784 | 0.3258 |
0.2715 | 3.9514 | 2600 | 0.1748 | 0.3268 |
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.3.0
- Tokenizers 0.21.0
- Downloads last month
- 31
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for MatricariaV/Kabardian-ASR-kaggle
Base model
facebook/mms-1b-all