Kabardian-ASR-kaggle

This model is a fine-tuned version of facebook/mms-1b-all on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1748
  • Wer: 0.3268

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6132 0.3040 200 0.4195 0.6846
0.4931 0.6079 400 0.3299 0.5413
0.3934 0.9119 600 0.2873 0.5070
0.3771 1.2158 800 0.2497 0.4569
0.3445 1.5198 1000 0.2516 0.4304
0.3724 1.8237 1200 0.2439 0.4079
0.3265 2.1277 1400 0.2083 0.4065
0.2983 2.4316 1600 0.2082 0.3693
0.3222 2.7356 1800 0.2073 0.3688
0.3461 3.0395 2000 0.1854 0.3438
0.2745 3.3435 2200 0.1813 0.3329
0.2867 3.6474 2400 0.1784 0.3258
0.2715 3.9514 2600 0.1748 0.3268

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.0
  • Tokenizers 0.21.0
Downloads last month
31
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for MatricariaV/Kabardian-ASR-kaggle

Finetuned
(255)
this model