layoutlm-funsd-tf / README.md
Matt6450's picture
Upload TFLayoutLMForTokenClassification
87f64fd verified
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: layoutlm-funsd-tf
    results: []

layoutlm-funsd-tf

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0961
  • Validation Loss: 1.5766
  • Train Overall Precision: 0.5302
  • Train Overall Recall: 0.6121
  • Train Overall F1: 0.5682
  • Train Overall Accuracy: 0.6392
  • Epoch: 31

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Overall Precision Train Overall Recall Train Overall F1 Train Overall Accuracy Epoch
1.7401 1.5464 0.0930 0.1174 0.1038 0.3843 0
1.4833 1.3301 0.2414 0.3964 0.3000 0.4268 1
1.2693 1.2622 0.2985 0.4947 0.3724 0.4693 2
1.1369 1.0729 0.3617 0.4887 0.4157 0.5902 3
1.0364 1.1800 0.3293 0.5073 0.3994 0.5604 4
0.9327 1.2033 0.3938 0.5268 0.4507 0.5683 5
0.8211 1.0876 0.4192 0.5153 0.4623 0.6004 6
0.7265 1.0982 0.4480 0.5334 0.4869 0.6102 7
0.6561 1.1134 0.4490 0.5650 0.5003 0.6192 8
0.5783 1.0834 0.4764 0.5630 0.5161 0.6317 9
0.5160 1.1453 0.4504 0.5494 0.4950 0.6227 10
0.4714 1.1865 0.4873 0.5981 0.5371 0.6277 11
0.4340 1.2212 0.4972 0.5805 0.5356 0.6318 12
0.3990 1.2407 0.4913 0.6212 0.5486 0.6334 13
0.3743 1.2597 0.5173 0.5986 0.5550 0.6338 14
0.3454 1.2205 0.5157 0.6106 0.5592 0.6406 15
0.3276 1.3600 0.5186 0.6001 0.5564 0.6318 16
0.3013 1.6473 0.4805 0.5745 0.5233 0.5899 17
0.3093 1.2595 0.4957 0.5735 0.5318 0.6389 18
0.2577 1.4449 0.4772 0.5675 0.5185 0.6076 19
0.2301 1.4514 0.4790 0.5620 0.5172 0.6205 20
0.2118 1.4575 0.5255 0.5991 0.5599 0.6305 21
0.1845 1.4446 0.5270 0.6076 0.5644 0.6353 22
0.1698 1.4538 0.5428 0.6011 0.5705 0.6423 23
0.1606 1.4318 0.5131 0.5720 0.5409 0.6361 24
0.1538 1.4257 0.5310 0.6061 0.5661 0.6484 25
0.1403 1.5233 0.5232 0.6061 0.5616 0.6428 26
0.1229 1.4796 0.5547 0.6131 0.5825 0.6471 27
0.1225 1.5841 0.5239 0.5946 0.5570 0.6101 28
0.1085 1.5432 0.5253 0.6046 0.5622 0.6423 29
0.1025 1.5414 0.5176 0.5966 0.5543 0.6312 30
0.0961 1.5766 0.5302 0.6121 0.5682 0.6392 31

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.15.0
  • Datasets 2.17.0
  • Tokenizers 0.15.2