metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: layoutlm-funsd-tf
results: []
layoutlm-funsd-tf
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0961
- Validation Loss: 1.5766
- Train Overall Precision: 0.5302
- Train Overall Recall: 0.6121
- Train Overall F1: 0.5682
- Train Overall Accuracy: 0.6392
- Epoch: 31
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
Training results
Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
---|---|---|---|---|---|---|
1.7401 | 1.5464 | 0.0930 | 0.1174 | 0.1038 | 0.3843 | 0 |
1.4833 | 1.3301 | 0.2414 | 0.3964 | 0.3000 | 0.4268 | 1 |
1.2693 | 1.2622 | 0.2985 | 0.4947 | 0.3724 | 0.4693 | 2 |
1.1369 | 1.0729 | 0.3617 | 0.4887 | 0.4157 | 0.5902 | 3 |
1.0364 | 1.1800 | 0.3293 | 0.5073 | 0.3994 | 0.5604 | 4 |
0.9327 | 1.2033 | 0.3938 | 0.5268 | 0.4507 | 0.5683 | 5 |
0.8211 | 1.0876 | 0.4192 | 0.5153 | 0.4623 | 0.6004 | 6 |
0.7265 | 1.0982 | 0.4480 | 0.5334 | 0.4869 | 0.6102 | 7 |
0.6561 | 1.1134 | 0.4490 | 0.5650 | 0.5003 | 0.6192 | 8 |
0.5783 | 1.0834 | 0.4764 | 0.5630 | 0.5161 | 0.6317 | 9 |
0.5160 | 1.1453 | 0.4504 | 0.5494 | 0.4950 | 0.6227 | 10 |
0.4714 | 1.1865 | 0.4873 | 0.5981 | 0.5371 | 0.6277 | 11 |
0.4340 | 1.2212 | 0.4972 | 0.5805 | 0.5356 | 0.6318 | 12 |
0.3990 | 1.2407 | 0.4913 | 0.6212 | 0.5486 | 0.6334 | 13 |
0.3743 | 1.2597 | 0.5173 | 0.5986 | 0.5550 | 0.6338 | 14 |
0.3454 | 1.2205 | 0.5157 | 0.6106 | 0.5592 | 0.6406 | 15 |
0.3276 | 1.3600 | 0.5186 | 0.6001 | 0.5564 | 0.6318 | 16 |
0.3013 | 1.6473 | 0.4805 | 0.5745 | 0.5233 | 0.5899 | 17 |
0.3093 | 1.2595 | 0.4957 | 0.5735 | 0.5318 | 0.6389 | 18 |
0.2577 | 1.4449 | 0.4772 | 0.5675 | 0.5185 | 0.6076 | 19 |
0.2301 | 1.4514 | 0.4790 | 0.5620 | 0.5172 | 0.6205 | 20 |
0.2118 | 1.4575 | 0.5255 | 0.5991 | 0.5599 | 0.6305 | 21 |
0.1845 | 1.4446 | 0.5270 | 0.6076 | 0.5644 | 0.6353 | 22 |
0.1698 | 1.4538 | 0.5428 | 0.6011 | 0.5705 | 0.6423 | 23 |
0.1606 | 1.4318 | 0.5131 | 0.5720 | 0.5409 | 0.6361 | 24 |
0.1538 | 1.4257 | 0.5310 | 0.6061 | 0.5661 | 0.6484 | 25 |
0.1403 | 1.5233 | 0.5232 | 0.6061 | 0.5616 | 0.6428 | 26 |
0.1229 | 1.4796 | 0.5547 | 0.6131 | 0.5825 | 0.6471 | 27 |
0.1225 | 1.5841 | 0.5239 | 0.5946 | 0.5570 | 0.6101 | 28 |
0.1085 | 1.5432 | 0.5253 | 0.6046 | 0.5622 | 0.6423 | 29 |
0.1025 | 1.5414 | 0.5176 | 0.5966 | 0.5543 | 0.6312 | 30 |
0.0961 | 1.5766 | 0.5302 | 0.6121 | 0.5682 | 0.6392 | 31 |
Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.17.0
- Tokenizers 0.15.2