Text-to-image finetuning - MaxReynolds/SouderRocketLauncherNetCombined_300
This pipeline was finetuned from CompVis/stable-diffusion-v1-2 on the MaxReynolds/Lee_Souder_Combined dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['Rocket Launcher by Lee Souder']:
Pipeline usage
You can use the pipeline like so:
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("MaxReynolds/SouderRocketLauncherNetCombined_300", torch_dtype=torch.float16)
prompt = "Rocket Launcher by Lee Souder"
image = pipeline(prompt).images[0]
image.save("my_image.png")
Training info
These are the key hyperparameters used during training:
- Epochs: 30
- Learning rate: 1e-05
- Batch size: 1
- Gradient accumulation steps: 4
- Image resolution: 512
- Mixed-precision: fp16
More information on all the CLI arguments and the environment are available on your wandb
run page.
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for MaxReynolds/SouderRocketLauncherNetCombined_300
Base model
CompVis/stable-diffusion-v1-2