|
--- |
|
base_model: meta-llama/Meta-Llama-3-70B-Instruct |
|
library_name: transformers |
|
tags: |
|
- axolotl |
|
- finetune |
|
- dpo |
|
- facebook |
|
- meta |
|
- pytorch |
|
- llama |
|
- llama-3 |
|
- chatml |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
license: llama3 |
|
license_name: llama3 |
|
license_link: LICENSE |
|
inference: false |
|
model_creator: MaziyarPanahi |
|
model_name: Llama-3-70B-Instruct-DPO-v0.1 |
|
quantized_by: MaziyarPanahi |
|
datasets: |
|
- mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha |
|
--- |
|
|
|
<img src="./llama-3-merges.webp" alt="Llama-3 DPO Logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/> |
|
|
|
|
|
# Llama-3-8B-Instruct-DPO-v0.3 (32k) |
|
|
|
This model is a fine-tune (DPO) of `meta-llama/Meta-Llama-3-8B-Instruct` model. I have used `rope_theta` to extend the context length up to 32K safely. |
|
|
|
# Quantized GGUF |
|
|
|
All GGUF models come with context length of `32000`: [Llama-3-8B-Instruct-DPO-v0.3-32k-GGUF](https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3-32k-GGUF) |
|
|
|
# Prompt Template |
|
|
|
This model uses `ChatML` prompt template: |
|
|
|
``` |
|
<|im_start|>system |
|
{System} |
|
<|im_end|> |
|
<|im_start|>user |
|
{User} |
|
<|im_end|> |
|
<|im_start|>assistant |
|
{Assistant} |
|
```` |
|
|
|
# How to use |
|
|
|
You can use this model by using `MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3` as the model name in Hugging Face's |
|
transformers library. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
from transformers import pipeline |
|
import torch |
|
|
|
model_id = "MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
# attn_implementation="flash_attention_2" |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_id, |
|
trust_remote_code=True |
|
) |
|
|
|
streamer = TextStreamer(tokenizer) |
|
|
|
pipeline = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
model_kwargs={"torch_dtype": torch.bfloat16}, |
|
streamer=streamer |
|
) |
|
|
|
# Then you can use the pipeline to generate text. |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
prompt = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
terminators = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|im_end|>") |
|
] |
|
|
|
outputs = pipeline( |
|
prompt, |
|
max_new_tokens=2048, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.95, |
|
) |
|
print(outputs[0]["generated_text"][len(prompt):]) |
|
``` |