calme-2.7-qwen2-7b / README.md
MaziyarPanahi's picture
Update README.md
6d0d2fc verified
|
raw
history blame
1.76 kB
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
tags:
- chat
- qwen
- qwen2
- finetune
- chatml
- OpenHermes-2.5
- HelpSteer2
- Orca
- SlimOrca
library_name: transformers
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
base_model: Qwen/Qwen2-7B
model_name: Qwen2-7B-Instruct-v0.7
datasets:
- nvidia/HelpSteer2
- teknium/OpenHermes-2.5
- microsoft/orca-math-word-problems-200k
- Open-Orca/SlimOrca
---
<img src="./qwen2-fine-tunes-maziyar-panahi.webp" alt="Qwen2 fine-tune" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# MaziyarPanahi/Qwen2-7B-Instruct-v0.7
This is a fine-tuned version of the `Qwen/Qwen2-7B` model. It aims to improve the base model across all benchmarks.
# ⚡ Quantized GGUF
All GGUF models are available here: [MaziyarPanahi/Qwen2-7B-Instruct-v0.7-GGUF](https://huggingface.co/MaziyarPanahi/Qwen2-7B-Instruct-v0.7-GGUF)
# 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
coming soon!
# Prompt Template
This model uses `ChatML` prompt template:
```
<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}
````
# How to use
```python
# Use a pipeline as a high-level helper
from transformers import pipeline
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="MaziyarPanahi/Qwen2-7B-Instruct-v0.7")
pipe(messages)
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/Qwen2-7B-Instruct-v0.7")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/Qwen2-7B-Instruct-v0.7")
```